Grey bar Blue bar
Share this:

Fri, 13 Jun 2014

Release the hounds! Snoopy 2.0

theHounds
Friday the 13th seemed like as good a date as any to release Snoopy 2.0 (aka snoopy-ng). For those in a rush, you can download the source from GitHub, follow the README.md file, and ask for help on this mailing list. For those who want a bit more information, keep reading.

What is Snoopy?


Snoopy is a distributed, sensor, data collection, interception, analysis, and visualization framework. It is written in a modular format, allowing for the collection of arbitrary signals from various devices via Python plugins.


It was originally released as a PoC at 44Con 2012, but this version is a complete re-write, is 99% Python, modular, and just feels better. The 'modularity' is possibly the most important improvement, for reasons which will become apparent shortly.


Tell me more!


We've presented our ongoing work with snoopy at a bunch of conferences under the title 'The Machines that Betrayed Their Masters'. The general synopsis of this research is that we all carry devices with us that emit wireless signals that could be used to:

  • Uniquely identify the device / collection of devices

  • Discover information about the owner (you!)


This new version of snoopy extends this into other areas of RFID such as; Wi-Fi, Bluetooth, GSM, NFC, RFID, ZigBee, etc. The modular design allows each of these to be implemented as a python module. If you can write Python code to interface with a tech, you can slot it into a snoopy-ng plugin.


We've also made it much easier to run Snoopy by itself, rather than requiring a server to sync to as the previous version did. However, Snoopy is still a distributed framework and allows the deployment of numerous Snoopy devices over some large area, having them all sync their data back to one central server (or numerous hops through multiple devices and/or servers). We've been working on other protocols for data synchronisation too - such as XBee. The diagram below illustrates one possible setup:


Architecture Diagram

OK - but how do I use it?


I thought you'd never ask! It's fairly straight forward.

Hardware Requirements


Snoopy should run on most modern computers capable of running Linux, with the appropriate physical adapters for the protocols you're interested in. We've tested it on:

  • Laptop

  • Nokia N900 (with some effort)

  • Raspberry Pi (SnooPi!)

  • BeagleBone Black (BeagleSnoop!)


In terms of hardware peripherals, we've been experimenting with the following:
TechnologyHardwareRange
Wi-FiAWUS 036H100m
BluetoothUbertooth50m
ZigBeeDigi Xbee1km to 80kms
GSMRTL2832U SDR35kms
RFIDRFidler15cm
NFCACR122U10cm


The distances can be increased with appropriate antennas. More on that in a later blog post.

Software Requirements


Essentially a Linux environment is required, but of more importance are the dependencies. These are mostly Python packages. We've tested Snoopy on Kali 1.x, and Ubuntu 12.04 LTS. We managed to get it working on Maemo (N900) too. We're investigating getting it running on OpenWRT/ddWRT. Please let us know if you have success.

Installation


It should be as simple as:
git clone https://github.com/sensepost/snoopy-ng.git
cd snoopy-ng
bash ./install.sh

Usage


Run Snoopy with the command 'snoopy', and accept the License Agreement. We'd recommend you refer to the README.md file for more information, but here are a few examples to get you going:


1. To save data from the wireless, sysinfo, and heartbeat plugins locally:

snoopy -v -m wifi:iface=wlanX,mon=True -m sysinfo -m heartbeat -d <drone name> -l <location name>

2. To sync data from a client to a server:


Server:

snoopy_auth --create <drone name> # Create account
snoopy -v -m server # Start server plugin

Client:
snoopy -v -m wifi:iface=mon0 -s http://<server hostname>:9001/ -d <drone name> -l <location name> -k

Data Visualization


Maltego is the preferred tool to perform visualisation, and where the beauty of Snoopy is revealed. See the README.md for instructions on how to use it.

I heard Snoopy can fly?


You heard right! Well, almost right. He's more of a passenger on a UAV:



There sure is a lot of stunt hacking in the media these days, with people taking existing hacks and duct-taping them to a cheap drone for media attention. We were concerned to see stories on snoopy airborne take on some of this as the message worked its way though the media. What's the benefit of having Snoopy airborne, then? We can think of a few reasons:


  1. Speed: We can canvas a large area very quickly (many square kilometres)

  2. Stealth: At 80m altitude the UAV is out of visual/audible range

  3. Security: It's possible to bypass physical security barriers (walls, men with guns, dogs)

  4. TTL (Tag, Track, Locate): It's possible to search for a known signature, and follow it


We're exploring the aerial route a whole lot. Look out for our DefCon talk in August for more details.

Commercial Use


The license under which Snoopy is released forbids gaining financially from its use (see LICENSE.txt). We have a separate license available for commercial use, which includes extra functionality such as:

  • Syncing data via XBee

  • Advanced plugins

  • Extra/custom transforms

  • Web interface

  • Prebuilt drones


Get in contact (glenn@sensepost.com / research@sensepost.com) if you'd like to engage with us.

Fri, 7 Dec 2012

Snoopy Release

We blogged a little while back about the Snoopy demonstration given at 44Con London. A similar talk was given at ZaCon in South Africa. Whilst we've been promising a release for a while now, we wanted to make sure all the components were functioning as expected and easy to use. After an army of hundreds had tested it (ok, just a few), you may now obtain a copy of Snoopy from here. Below are some instructions on getting it running (check out the README file from the installer for additional info).


Remind me what Snoopy is?
Snoopy is a distributed tracking, data interception, and profiling framework.

Requirements
-Ubuntu 12.04 LTS 32bit online server
-One or more Linux based client devices with internet connectivity and a WiFi device supporting injection drivers. We'd recommend the Nokia N900.
-A copy of Maltego Radium


Installation
After obtaining a copy from github run the install.sh script. You will be prompted to enter a username to use for Snoopy (default is 'woodstock') and to supply your public IP address. This is depicted below:



This installation will take around 3-5 minutes. At the end of the installation you will be presented with a randomly generated password for the web interface login. Remember it. You may now run the server component with the command snoopy, and you will be presented with the server main menu, as depicted below.



Selecting the 'Manage drone configuration packs' menu option will allow you to create custom installation packs for all of your drone devices. You will be presented with download links for these packs, such that you can download the software to your drones.


Creating a drone pack


Drone pack listing


From your drone device download and extract the file from given link. Run setup_linux.sh or setup_n900.sh depending on your drone.


N900 Install


N900 desktop icon

N900 main menu


Drone running on backtrack


All collected probe data gets uploaded to the Snoopy server every 30 seconds. All associated clients have their internet routed through the server over OpenVPN. If you so desire, you can explore the MySQL database 'snoopy' to see this raw data. Graphical data exploration is more fun though.


Using Maltego
In the Snoopy server menu select 'Configure server options' > 'List Maltego transform URLs'. This will give URLs to download Maltego Snoopy entities and machines, as well as a list of TDS transform URLs. You will need to download and add the entities and machines to your local Maltego installation, and add the transform URLs to your Maltego TDS account (https://cetas.paterva.com/tds). This is depicted below.


Transform URLs


Entities and transforms

Maltego TDS server


Adding the seed to maltego


We can explore data my dragging the 'Snoopy' entity onto the canvas. This entity has two useful properties - 'start_time' and 'end_time'. If these are left blank Snoopy will run in 'real time' mode - that is to say displaying data from the last 5 minutes (variable can be set in server configuration menu). This time value will be 'inherited' by entities created from this point. The transforms should be obvious to explore, but below are some examples (further examples were in the original blog post).


Drones and locations


Devices observed at multiple=


Countries devices have visited

Browsing intercepted Facebook profiles


Twitter Geolocation Intersection


I shall write a separate blog post detailing all the transforms. For now, enjoy playing around.


Web Interface
You can access the web interface via http://yoursnoopyserver:5000/. You can write your own data exploration plugins. Check the Appendix of the README file for more info on that.

Tue, 16 Oct 2007

MSDN Mag - Security Edition is out..

November07cover.gif
" The November edition of MSDN magazine [is available] and is another security issue.. The articles look interesting, and if you look closely you should notice articles by infosec rockstars like mike howard, damien hasse and the occasional member of LSD..

Grab it while its hot...