Grey bar Blue bar
Share this:

Fri, 7 Dec 2012

Snoopy Release

We blogged a little while back about the Snoopy demonstration given at 44Con London. A similar talk was given at ZaCon in South Africa. Whilst we've been promising a release for a while now, we wanted to make sure all the components were functioning as expected and easy to use. After an army of hundreds had tested it (ok, just a few), you may now obtain a copy of Snoopy from here. Below are some instructions on getting it running (check out the README file from the installer for additional info).


Remind me what Snoopy is?
Snoopy is a distributed tracking, data interception, and profiling framework.

Requirements
-Ubuntu 12.04 LTS 32bit online server
-One or more Linux based client devices with internet connectivity and a WiFi device supporting injection drivers. We'd recommend the Nokia N900.
-A copy of Maltego Radium


Installation
After obtaining a copy from github run the install.sh script. You will be prompted to enter a username to use for Snoopy (default is 'woodstock') and to supply your public IP address. This is depicted below:



This installation will take around 3-5 minutes. At the end of the installation you will be presented with a randomly generated password for the web interface login. Remember it. You may now run the server component with the command snoopy, and you will be presented with the server main menu, as depicted below.



Selecting the 'Manage drone configuration packs' menu option will allow you to create custom installation packs for all of your drone devices. You will be presented with download links for these packs, such that you can download the software to your drones.


Creating a drone pack


Drone pack listing


From your drone device download and extract the file from given link. Run setup_linux.sh or setup_n900.sh depending on your drone.


N900 Install


N900 desktop icon

N900 main menu


Drone running on backtrack


All collected probe data gets uploaded to the Snoopy server every 30 seconds. All associated clients have their internet routed through the server over OpenVPN. If you so desire, you can explore the MySQL database 'snoopy' to see this raw data. Graphical data exploration is more fun though.


Using Maltego
In the Snoopy server menu select 'Configure server options' > 'List Maltego transform URLs'. This will give URLs to download Maltego Snoopy entities and machines, as well as a list of TDS transform URLs. You will need to download and add the entities and machines to your local Maltego installation, and add the transform URLs to your Maltego TDS account (https://cetas.paterva.com/tds). This is depicted below.


Transform URLs


Entities and transforms

Maltego TDS server


Adding the seed to maltego


We can explore data my dragging the 'Snoopy' entity onto the canvas. This entity has two useful properties - 'start_time' and 'end_time'. If these are left blank Snoopy will run in 'real time' mode - that is to say displaying data from the last 5 minutes (variable can be set in server configuration menu). This time value will be 'inherited' by entities created from this point. The transforms should be obvious to explore, but below are some examples (further examples were in the original blog post).


Drones and locations


Devices observed at multiple=


Countries devices have visited

Browsing intercepted Facebook profiles


Twitter Geolocation Intersection


I shall write a separate blog post detailing all the transforms. For now, enjoy playing around.


Web Interface
You can access the web interface via http://yoursnoopyserver:5000/. You can write your own data exploration plugins. Check the Appendix of the README file for more info on that.

Tue, 25 Sep 2012

Snoopy: A distributed tracking and profiling framework

At this year's 44Con conference (held in London) Daniel and I introduced a project we had been working on for the past few months. Snoopy, a distributed tracking and profiling framework, allowed us to perform some pretty interesting tracking and profiling of mobile users through the use of WiFi. The talk was well received (going on what people said afterwards) by those attending the conference and it was great to see so many others as excited about this as we have been.

In addition to the research, we both took a different approach to the presentation itself. A 'no bullet points' approach was decided upon, so the slides themselves won't be that revealing. Using Steve Jobs as our inspiration, we wanted to bring back the fun to technical conferences, and our presentation hopefully represented that. As I type this, I have been reliably informed that the DVD, and subsequent videos of the talk, is being mastered and will be ready shortly. Once we have it, we will update this blog post. In the meantime, below is a description of the project.

Background

There have been recent initiatives from numerous governments to legalise the monitoring of citizens' Internet based communications (web sites visited, emails, social media) under the guise of anti-terrorism. Several private organisations have developed technologies claiming to facilitate the analysis of collected data with the goal of identifying undesirable activities. Whether such technologies are used to identify such activities, or rather to profile all citizens, is open to debate. Budgets, technical resources, and PhD level staff are plentiful in this sphere.

Snoopy

The above inspired the goal of the Snoopy project: with the limited time and resources of a few technical minds could we create our own distributed tracking and data interception framework with functionality for simple analysis of collected data? Rather than terrorist-hunting, we would perform simple tracking and real-time + historical profiling of devices and the people who own them. It is perhaps worth mentioning at this point that Snoopy is compromised of various existing technologies combined into one distributed framework.

"Snoopy is a distributed tracking and profiling framework."

Below is a diagram of the Snoopy architecture, which I'll elaborate on:

1. Distributed?

Snoopy runs client side code on any Linux device that has support for wireless monitor mode / packet injection. We call these "drones" due to their optimal nature of being small, inconspicuous, and disposable. Examples of drones we used include the Nokia N900, Alfa R36 router, Sheeva plug, and the RaspberryPi. Numerous drones can be deployed over an area (say 50 all over London) and each device will upload its data to a central server.

2. WiFi?

A large number of people leave their WiFi on. Even security savvy folk; for example at BlackHat I observed >5,000 devices with their WiFi on. As per the RFC documentation (i.e. not down to individual vendors) client devices send out 'probe requests' looking for networks that the devices have previously connected to (and the user chose to save). The reason for this appears to be two fold; (i) to find hidden APs (not broadcasting beacons) and (ii) to aid quick transition when moving between APs with the same name (e.g. if you have 50 APs in your organisation with the same name). Fire up a terminal and bang out this command to see these probe requests:

tshark -n -i mon0 subtype probereq

(where mon0 is your wireless device, in monitor mode)

2. Tracking?

Each Snoopy drone collects every observed probe-request, and uploads it to a central server (timestamp, client MAC, SSID, GPS coordinates, and signal strength). On the server side client observations are grouped into 'proximity sessions' - i.e device 00:11:22:33:44:55 was sending probes from 11:15 until 11:45, and therefore we can infer was within proximity to that particular drone during that time.

We now know that this device (and therefore its human) were at a certain location at a certain time. Given enough monitoring stations running over enough time, we can track devices/humans based on this information.

3. Passive Profiling?

We can profile device owners via the network SSIDs in the captured probe requests. This can be done in two ways; simple analysis, and geo-locating.

Simple analysis could be along the lines of "Hmm, you've previously connected to hooters, mcdonalds_wifi, and elCheapoAirlines_wifi - you must be an average Joe" vs "Hmm, you've previously connected to "BA_firstclass, ExpensiveResataurant_wifi, etc - you must be a high roller".

Of more interest, we can potentially geo-locate network SSIDs to GPS coordinates via services like Wigle (whose database is populated via wardriving), and then from GPS coordinates to street address and street view photographs via Google. What's interesting here is that as security folk we've been telling users for years that picking unique SSIDs when using WPA[2] is a "good thing" because the SSID is used as a salt. A side-effect of this is that geo-locating your unique networks becomes much easier. Also, we can typically instantly tell where you work and where you live based on the network name (e.g BTBusinessHub-AB12 vs BTHomeHub-FG12).

The result - you walk past a drone, and I get a street view photograph of where you live, work and play.

4. Rogue Access Points, Data Interception, MITM attacks?

Snoopy drones have the ability to bring up rogue access points. That is to say, if your device is probing for "Starbucks", we'll pretend to be Starbucks, and your device will connect. This is not new, and dates back to Karma in 2005. The attack may have been ahead of its time, due to the far fewer number of wireless devices. Given that every man and his dog now has a WiFi enabled smartphone the attack is much more relevant.

Snoopy differentiates itself with its rogue access points in the way data is routed. Your typical Pineapple, Silica, or various other products store all intercepted data locally, and mangles data locally too. Snoopy drones route all traffic via an OpenVPN connection to a central server. This has several implications:

(i) We can observe traffic from *all* drones in the field at one point on the server. (ii) Any traffic manipulation needs only be done on the server, and not once per drone. (iii) Since each Drone hands out its own DHCP range, when observing network traffic on the server we see the source IP address of the connected clients (resulting in a unique mapping of MAC <-> IP <-> network traffic). (iv) Due to the nature of the connection, the server can directly access the client devices. We could therefore run nmap, Metasploit, etc directly from the server, targeting the client devices. This is a much more desirable approach as compared to running such 'heavy' software on the Drone (like the Pineapple, pr Pwnphone/plug would). (v) Due to the Drone not storing data or malicious tools locally, there is little harm if the device is stolen, or captured by an adversary.

On the Snoopy server, the following is deployed with respect to web traffic:

(i) Transparent Squid server - logs IP, websites, domains, and cookies to a database (ii) sslstrip - transparently hijacks HTTP traffic and prevent HTTPS upgrade by watching for HTTPS links and redirecting. It then maps those links into either look-alike HTTP links or homograph-similar HTTPS links. All credentials are logged to the database (thanks Ian & Junaid). (iii) mitmproxy.py - allows for arbitary code injection, as well as the use of self-signed SSL certificates. By default we inject some JavaScipt which profiles the browser to discern the browser version, what plugins are installed, etc (thanks Willem).

Additionally, a traffic analysis component extracts and reassembles files. e.g. PDFs, VOiP calls, etc. (thanks Ian).

5. Higher Level Profiling? Given that we can intercept network traffic (and have clients' cookies/credentials/browsing habbits/etc) we can extract useful information via social media APIs. For example, we could retrieve all Facebook friends, or Twitter followers.

6. Data Visualization and Exploration? Snoopy has two interfaces on the server; a web interface (thanks Walter), and Maltego transforms.

-The Web Interface The web interface allows basic data exploration, as well as mapping. The mapping part is the most interesting - it displays the position of Snoopy Drones (and client devices within proximity) over time. This is depicted below:

-Maltego Maltego Radium has recently been released; and it is one awesome piece of kit for data exploration and visualisation.What's great about the Radium release is that you can combine multiple transforms together into 'machines'. A few example transformations were created, to demonstrate:

1. Devices Observed at both 44Con and BlackHat Vegas Here we depict devices that were observed at both 44Con and BlackHat Las Vegas, as well as the SSIDs they probed for.

2. Devices at 44Con, pruned Here we look at all devices and the SSIDs they probed for at 44Con. The pruning consisted of removing all SSIDs that only one client was looking for, or those for which more than 20 were probing for. This could reveal 'relationship' SSIDs. For example, if several people from the same company were attending- they could all be looking for their work SSID. In this case, we noticed the '44Con crew' network being quite popular. To further illustrate Snoopy we 'targeted' these poor chaps- figuring out where they live, as well as their Facebook friends (pulled from intercepted network traffic*).

Snoopy Field Experiment

We collected broadcast probe requests to create two main datasets. I collected data at BlackHat Vegas, and four of us sat in various London underground stations with Snoopy drones running for 2 hours. Furthermore, I sat at King's Cross station for 13 hours (!?) collecting data. Of course it may have made more sense to just deploy an unattended Sheeva plug, or hide a device with a large battery pack - but that could've resulted in trouble with the law (if spotted on CCTV). I present several graphs depicting the outcome from these trials:

The pi chart below depicts the proportion of observed devices per vendor, from the total sample of 77,498 devices. It is interesting to see Apple's dominance. pi_chart

The barchart below depicts the average number of broadcast SSIDs from a random sample of 100 devices per vendor (standard deviation bards need to be added - it was quite a spread).

The barchart below depicts my day sitting at King's Cross station. The horizontal axis depicts chunks of time per hour, and the vertical access number of unique device observations. We clearly see the rush hours.

Potential Use

What could be done with Snoopy? There are likely legal, borderline, and illegal activities. Such is the case with any technology.

Legal -Collecting anonymized statistics on thoroughfare. For example, Transport for London could deploy these devices at every London underground to get statistics on peak human traffic. This would allow them to deploy more staff, or open more pathways, etc. Such data over the period of months and years would likely be of use for future planning. -Penetration testers targeting clients to demonstrate the WiFi threat.

Borderline -This type of technology could likely appeal to advertisers. For example, a reseller of a certain brand of jeans may note that persons who prefer certain technologies (e.g. Apple) frequent certain locations. -Companies could deploy Drones in one of each of their establishments (supermarkets, nightclubs, etc) to monitor user preference. E.g. a observing a migration of customers from one establishment to another after the deployment of certain incentives (e.g. promotions, new layout). -Imagine the Government deploying hundreds of Drones all over a city, and then having field agents with mobile Drones in their pockets. This could be a novel way to track down or follow criminals. The other side of the coin of course being that they track all of us...

Illegal -Let's pretend we want to target David Beckham. We could attend several public events at which David is attending (Drone in pocket), ensuring we are within reasonable proximity to him. We would then look for overlap of commonly observed devices over time at all of these functions. Once we get down to one device observed via this intersection, we could assume the device belongs to David. Perhaps at this point we could bring up a rogue access point that only targets his device, and proceed maliciously from there. Or just satisfy ourselves by geolocating places he frequents. -Botnet infections, malware distribution. That doesn't sound very nice. Snoopy drones could be used to infect users' devices, either by injection malicious web traffic, or firing exploits from the Snoopy server at devices. -Unsolicited advertising. Imagine browsing the web, and an unscrupulous 3rd party injects viagra adverts at the top of every visited page?


Similar tools

Immunity's Stalker and Silica Hubert's iSniff GPS

Snoopy in the Press

Risky Biz Podcast Naked Scientist Podcast(transcript) The Register Fierce Broadband Wireless

***FAQ***

Q. But I use WPA2 at home, you can't hack me! A. True - if I pretend to be a WPA[2] network association it will fail. However, I bet your device is probing for at least one open network, and when I pretend to be that one I'll get you.

Q. I use Apple/Android/Foobar - I'm safe! A. This attack is not dependent on device/manufacture. It's a function of the WiFi specification. The vast majority of observed devices were in fact Apple (>75%).

Q. How can I protect myself? A. Turn off your WiFi when you l leave home/work. Be cautions about using it in public places too - especially on open networks (like Starbucks). A. On Android and on your desktop/laptop you can selectively remove SSIDs from your saved list. As for iPhones there doesn't seem to be option - please correct me if I'm wrong? A. It'd be great to write an application for iPhone/Android that turns off probe-requests, and will only send them if a beacon from a known network name is received.

Q. Your research is dated and has been done before! A. Some of the individual components, perhaps. Having them strung together in our distributed configuration is new (AFAIK). Also, some original ideas where unfortunately published first; as often happens with these things.

Q. But I turn off WiFi, you'll never get me! A. It was interesting to note how many people actually leave WiFi on. e.g. 30,000 people at a single London station during one day. WiFi is only one avenue of attack, look out for the next release using Bluetooth, GSM, NFC, etc :P

Q. You're doing illegal things and you're going to jail! A. As mentioned earlier, the broadcast nature of probe-requests means no laws (in the UK) are being broken. Furthermore, I spoke to a BT Engineer at 44Con, and he told me that there's no copyright on SSID names - i.e. there's nothing illegal about pretending to be "BTOpenzone" or "SkyHome-AFA1". However, I suspect at the point where you start monitoring/modifying network traffic you may get in trouble. Interesting to note that in the USA a judge ruled that data interception on an open network is not illegal.

Q. But I run iOS 5/6 and they say this is fixed!! A. Mark Wuergler of Immunity, Inc did find a flaw whereby iOS devices leaked info about the last 3 networks they had connected to. The BSSID was included in ARP requests, which meant anyone sniffing the traffic originating from that device would be privy to the addresses. Snoopy only looks at broadcast SSIDs at this stage - and so this fix is unrelated. We haven't done any tests with the latest iOS, but will update the blog when we have done so.

Q. I want Snoopy! A. I'm working on it. Currently tidying up code, writing documentation, etc. Soon :-)

Tue, 7 Aug 2012

Black Hat Training Classes Update

Hey All,

We're about locked and loaded down here in ZA - ready to tackle the looooong journey to Vegas for Black Hat. If you're headed to Black Hat but haven't yet booked training there's still time, so I thought I'd push out a brief update on what's still available from our stable of courses. As many of our courses have sold out we opened second classrooms and as a result have plenty of space to accommodate late comers!

Here's the deal:

1. "Cadet" is our intro course. We only offer it on the weekend (21st & 22nd) but its really popular so we've opened a 2nd classroom. Plenty of space available, so sign up!

2. "Bootcamp" is our novice course. We've opened up additional classrooms also, so we can accommodate at least 9 more people.

3. Our "Unplugged" Wifi course is sold out and we simply can't take any more people there unfortunately.

4. "BlackOps" is our post-exploitation course. It has sold really well this year, but we do still have a handful of seats available if you hurry.

5. "W^3" is our web hacking course. It only runs during the week (23rd & 24th) but we have a a nice spacious classroom so there are still plenty of seats available. Classic web hacking goodness.

6. "Combat" is our advanced CTF based training lab. It is an amazing course if you're already an experienced pentester. We keep the classroom sizes small, but we could possibly accommodate another 5 people on the weekend and maybe 10 people during the week.

If you need help selecting the right course, or getting registered, please contact us via training[at]sensepost[dot]com.

If you're based outside the US and won't be making Vegas this year, there's still hope! Check out these two other events where we'll be offering courses:

Mon, 11 Jun 2012

CREST South Africa? Let's talk...

First, some background on CREST in the form of blatant plagiarism...

CREST — The Council for Registered Ethical Security Testers - exists to serve the needs of a global information security marketplace that increasingly requires the services of a regulated and professional security testing capability. They provide globally recognised, up to date certifications for organisations and individuals providing penetration testing services.

For organisations, CREST provides a provable validation of security testing methodologies and practices, aiding with client engagement and procurement processes, and proving that your company is committed to providing testing services to the highest standard.

For individuals, CREST provides an industry leading qualification and career path for security penetration testers. By gaining a CREST certification you are proving that you are committed to your professional development in security testing.

CREST has been serving the industry as a pivotal player in the Penetration Testing landscape for many years now, and has also recently established a government-approved chapter in Australia.

There have been numerous discussions about CREST in South Africa over the years and we believe now is the time to take the conversation further. Ian Glover - President of CREST - will be in South Africa next week to deliver a presentation at the ITWeb Security Summit in Johannesburg, and this affords interested parties and excellent opportunity to discuss the concept with him.

With the support of ITWeb we're setting up a workshop to be held at the Sandton Convention Center from 10h00 to 12h00 on Thursday 17 May to meet with Ian, understand the process, and discuss a possible path forward.

Interested parties, whether from testing companies or clients, should please RSVP by commenting on this post (we'll keep it private) or mailing us via info <at> sensepost <dot> com.

Be part of the discussion. We look forward to hearing from you!

Wed, 9 May 2012

Pentesting in the spotlight - a view

As 44Con 2012 starts to gain momentum (we'll be there again this time around) I was perusing some of the talks from last year's event...

It was a great event with some great presentations, including (if I may say) our own Ian deVilliers' *Security Application Proxy Pwnage*. Another presentation that caught my attention was Haroon Meer's *Penetration Testing considered harmful today*. In this presentation Haroon outlines concerns he has with Penetration Testing and suggests some changes that could be made to the way we test in order to improve the results we get. As you may know a core part of SensePost's business, and my career for almost 13 years, has been security testing, and so I followed this talk quite closely. The raises some interesting ideas and I felt I'd like to comment on some of the points he was making.

As I understood it, the talk's hypothesis could be (over) simplified as follows:

  1. Despite all efforts the security problem is growing and we're heading towards a 'security apocalypse';
  2. Penetration Testing has been presented as a solution to this problem;
  3. Penetration Testing doesn't seem to be working - we're still just one 0-day away from being owned - even for our most valuable assets;
  4. One of the reasons for this is that we don't cater for the 0-day, which is a game-changer. 0-day is sometimes overemphasized, but mostly it's underemphasized, making the value of the test spurious at best;
  5. There are some ways in which this can be improved, including the use '0-day cards', which allow the tester to emulate the use of a 0-day on a specific system without needing to actually have one. Think of this like a joker in a game of cards.
To begin with, let's consider the term "Penetration Testing", which sits at the core of the hypotheses. This term is widely used to express a number of security testing methodologies and could also be referred to as "attack & penetration", "ethical hacking", "vulnerability testing" or "vulnerability assessment". At SensePost we use the latter term, and the methodology it expresses includes a number of phases of which 'penetration testing' - the attempt to actually leverage the vulnerabilities discovered and practically demonstrate their potential impact to the business - is only one. The talk did not specify which specific definition of Penetration Test he was using. However, given the emphasis later in the talk about the significance of the 0-day and 'owning' things, I'm assuming he was using the most narrow, technical form of the term. It would seem to me that this already impacts much of his assertion: There are cases of course where a customer wants us simply to 'own' something, or somethings, but most often Penetration Testing is performed within the context of some broader assessment within which many of Haroon's concerns may already be being addressed. As the talk pointed out, there are instances where the question is asked "can we breached?", or "can we be breached without detecting it?". In such cases a raw "attack and penetration" test can be exactly what's needed; indeed it's a model that's been used by the military for decades. However for the most part penetration testing should only be used as a specific phase in an assessment and to achieve a specific purpose. I believe many services companies, including our own, have already evolved to the point where this is the case.

Next, I'd like to consider the assertion that penetration testing or even security assessment is presented as the "solution" to the security problem. While it's true that many companies do employ regular testing, amongst our customers it's most often used as a part of a broader strategy, to achieve a specific purpose. Security Assessment is about learning. Through regular testing, the tester, the assessment team and the customer incrementally understand threats and defenses better. Assumptions and assertions are tested and impacts are demonstrated. To me the talk's point is like saying that cholesterol testing is being presented as a solution to heart attacks. This seems untrue. Medical testing for a specific condition helps us gauge the likelihood of someone falling victim to a disease. Having understood this, we can apply treatments, change behavior or accept the odds and carry on. Where we have made changes, further testing helps us gauge whether those changes were successful or not. In the same way, security testing delivers a data point that can be used as part of a general security management process. I don't believe many people are presenting testing as the 'solution' to the security problem.

It is fair to say that the entire process within which security testing functions is not having the desired effect; Hence the talk's reference to a "security apocalypse". The failure of security testers to communicate the severity of the situation in language that business can understand surely plays a role here. However, it's not clear to me that the core of this problem lies with the testing component.

A significant, and interesting component of the talk's thesis has to do with the role of "0-day" in security and testing. He rightly points out that even a single 0-day in the hands of an attacker can completely change the result of the test and therefore the situation for the attacker. He suggests in his talk that the testing teams who do have 0-day are inclined to over-emphasise those that they have, whilst those who don't have tend to underemphasize or ignore their impact completely. Reading a bit into what he was saying, you can see the 0-day as a joker in a game of cards. You can play a great game with a great hand but if your opponent has a joker he's going to smoke you every time. In this the assertion is completely true. The talk goes on to suggest that testers should be granted "0-day cards", which they can "play" from time to time to be granted access to a particular system and thereby to illustrate more realistically the impact a 0-day can have. I like this idea very much and I'd like to investigate incorporating it into the penetration testing phase for some of our own assessments.

What I struggle to understand however, is why the talk emphasizes the particular 'joker' over a number of others that seems apparent to me. For example, why not have a "malicious system administrator card", a "spear phishing card", a "backdoor in OTS software" card or a "compromise of upstream provider" card? As the 'compromise' of major UK sites like the Register and the Daily Telegraph illustrate there are many factors that could significantly alter the result of an attack but that would typically fall outside the scope of a traditional penetration test. These are attack vectors that fall within the victim's threat model but are often outside of their reasonable control. Their existence is typically not dealt with during penetration testing, or even assessment, but also cannot be ignored. This doesn't doesn't invalidate penetration testing itself, it simply illustrates that testing is not equal to risk management and that risk management also needs to consider factors beyond the client's direct control.

The solution to this conundrum was touched on in the presentation, albeit very briefly, and it's "Threat Modeling". For the last five years I've been arguing that system- or enterprise-wide Threat Modeling presents us with the ability to deal with all these unknown factors (and more) and perform technical testing in a manner that's both broader and more efficient.

The core of the approach I'm proposing is roughly based on the Microsoft methodology and looks as follows:

  1. Develop a model of your target environment, incorporating all players, locations, and interfaces. This is done in close collaboration between the client and the tester, thus incorporating both the 'insider' and the 'outsider' perspective;
  2. Enumerate all potential risks, and map them to the model. This results in a very long and comprehensive list of hypothetical risks, which would naturally include the 0-day, but also all the other 'jokers' that we discussed above;
  3. Sort the list into some order of priority and group similar hypothetical risks together;
  4. Perform tests in order of priority where appropriate to prove or disprove the hypothetical risks;
  5. Remediate, mitigate, insure or inform as appropriate;
  6. Rinse and repeat.
This approach provides a reasonable balance between solid theoretical risk management and aggressive technical testing that addresses all the concerns raised in the talk about the way penetration testing is done today. It also provides the customer with a concrete register of tested risks that can easily be updated from time-to-time and makes sense to both technical and business leaders.

Threat Modeling makes our testing smarter, broader, more efficient and more relevant and as such is a vital improvement to our risk assessment methodology.

Solving the security problem in total is sadly still going to take a whole lot more work...