Grey bar Blue bar
Share this:

Fri, 12 Apr 2013

Analysis of Security in a P2P storage cloud

A cloud storage service such as Microsoft SkyDrive requires building data centers as well as operational and maintenance costs. An alternative approach is based on distributed computing model which utilizes portion of the storage and processing resources of consumer level computers and SME NAS devices to form a peer to peer storage system. The members contribute some of their local storage space to the system and in return receive "online backup and data sharing" service. Providing data confidentiality, integrity and availability in such de-centerlized storage system is a big challenge to be addressed. As the cost of data storage devices declines, there is a debate that whether the P2P storage could really be cost saving or not. I leave this debate to the critics and instead I will look into a peer to peer storage system and study its security measures and possible issues. An overview of this system's architecture is shown in the following picture:


Each node in the storage cloud receives an amount of free online storage space which can be increased by the control server if the node agrees to "contribute" some of its local hard drive space to the system. File synchronisation and contribution agents that are running on every node interact with the cloud control server and other nodes as shown in the above picture. Folder/File synchronisation is performed in the following steps:



1) The node authenticates itself to the control server and sends file upload request with file meta data including SHA1 hash value, size, number of fragments and file name over HTTPS connection.


2) The control server replies with the AES encryption key for the relevant file/folder, a [IP Address]:[Port number] list of contributing nodes called "endpoints list" and a file ID.


3) The file is split into blocks each of which is encrypted with the above AES encryption key. The blocks are further split into 64 fragments and redundancy information also gets added to them.


4) The node then connects to the contribution agent on each endpoint address that was received in step 2 and uploads one fragment to each of them


Since the system nodes are not under full control of the control server, they fall offline any time or the stored file fragments may become damaged/modified intentionally. As such, the control server needs to monitor node and fragment health regularly so that it may move lost/damaged fragments to alternate nodes if need be. For this purpose, the contribution agent on each node maintains an HTTPS connection to the control server on which it receives the following "tasks":


a) Adjust settings : instructs the node to modify its upload/download limits , contribution size and etc


b) Block check : asks the node to connect to another contribution node and verify a fragment existence and hash value


c) Block Recovery : Assist the control server to recover a number of fragments


By delegating the above task, the control system has placed some degree of "trust" or at least "assumptions" about the availability and integrity of the agent software running on the storage cloud nodes. However, those agents can be manipulated by malicious nodes in order to disrupt cloud operations, attack other nodes or even gain unauthorised access to the distributed data. I limited the scope of my research to the synchronisation and contribution agent software of two storage nodes under my control - one of which was acting as a contribution node. I didn't include the analysis of the encryption or redundancy of the system in my preliminary research because it could affect the live system and should only be performed on a test environment which was not possible to set up, as the target system's control server was not publicly available. Within the contribution agent alone, I identified that not only did I have unauthorised access file storage (and download) on the cloud's nodes, but I had unauthorised access to the folder encryption keys as well.


a) Unauthorised file storage and download


The contribution agent created a TCP network listener that processed commands from the control server as well as requests from other nodes. The agent communicated over HTTP(s) with the control server and other nodes in the cloud. An example file fragment upload request from a remote node is shown below:



Uploading fragments with similar format to the above path name resulted in the "bad request" error from the agent. This indicated that the fragment name should be related to its content and this condition is checked by the contribution agent before accepting the PUT request. By decompiling the agent software code, it was found that the fragment name must have the following format to pass this validation:


<SHA1(uploaded content)>.<Fragment number>.<Global Folder Id>


I used the above file fragment format to upload notepad.exe to the remote node successfully as you can see in the following figure:



The download request (GET request) was also successful regardless of the validity of "Global Folder Id" and "Fragment Number". The uploaded file was accessible for about 24 hours, until it was purged automatically by the contribution agent, probably because it won't receive any "Block Check" requests for the control server for this fragment. Twenty four hours still is enough time for malicious users to abuse storage cloud nodes bandwidth and storage to serve their contents over the internet without victim's knowledge.


b) Unauthorised access to folder encryption keys


The network listener responded to GET requests from any remote node as mentioned above. This was intended to serve "Block Check" commands from the control server which instructs a node to fetch a number of fragments from other nodes (referred to as "endpoints") and verify their integrity but re-calculating the SHA1 hash and reporting back to the control server. This could be part of the cloud "health check" process to ensure that the distributed file fragments are accessible and not tampered with. The agent could also process "File Recovery" tasks from the control server but I didn't observe any such command from the control server during the dynamic analysis of the contribution agent, so I searched the decompiled code for clues on the file recovery process and found the following code snippet which could suggest that the agent is cable of retrieving encryption keys from the control server. This was something odd, considering that each node should only have access to its own folders encryption keys and it stores encrypted file fragments of other nodes.


One possible explanation for the above file recovery code, could be that the node first downloads its own file fragments from remote endpoints (using an endpoint list received from the control server) and then retrieves the required folder encryption key from the control server in order to decrypt and re-assemble its own files. In order to test if it's possible to abuse the file recovery operation to gain access to encryption key of the folders belonging to other nodes. I extracted the folderInfo request format from the agent code and set up another storage node as a target to test this idea. The result of the test was successful as shown in the following figure and it was possible to retrieve the AES-256 encryption key for the Folder Id "1099869693336". This could enable an attacker who has set up an contributing storage node to decrypt the fragments that belong to other cloud users.



Conclusion:


While peer to peer storage systems have lower setup/maintenance costs, they face security threats from the storage nodes that are not under direct physical/remote control of the cloud controller system. Examples of such threats relate to the cloud's client agent software and the cloud server's authorisation control, as demonstrated in this post. While analysis of the data encryption and redundancy in the peer to peer storage system would be an interesting future research topic, we hope that the findings from this research can be used to improve the security of various distributed storage systems.

Fri, 7 Dec 2012

Snoopy Release

We blogged a little while back about the Snoopy demonstration given at 44Con London. A similar talk was given at ZaCon in South Africa. Whilst we've been promising a release for a while now, we wanted to make sure all the components were functioning as expected and easy to use. After an army of hundreds had tested it (ok, just a few), you may now obtain a copy of Snoopy from here. Below are some instructions on getting it running (check out the README file from the installer for additional info).


Remind me what Snoopy is?
Snoopy is a distributed tracking, data interception, and profiling framework.

Requirements
-Ubuntu 12.04 LTS 32bit online server
-One or more Linux based client devices with internet connectivity and a WiFi device supporting injection drivers. We'd recommend the Nokia N900.
-A copy of Maltego Radium


Installation
After obtaining a copy from github run the install.sh script. You will be prompted to enter a username to use for Snoopy (default is 'woodstock') and to supply your public IP address. This is depicted below:



This installation will take around 3-5 minutes. At the end of the installation you will be presented with a randomly generated password for the web interface login. Remember it. You may now run the server component with the command snoopy, and you will be presented with the server main menu, as depicted below.



Selecting the 'Manage drone configuration packs' menu option will allow you to create custom installation packs for all of your drone devices. You will be presented with download links for these packs, such that you can download the software to your drones.


Creating a drone pack


Drone pack listing


From your drone device download and extract the file from given link. Run setup_linux.sh or setup_n900.sh depending on your drone.


N900 Install


N900 desktop icon

N900 main menu


Drone running on backtrack


All collected probe data gets uploaded to the Snoopy server every 30 seconds. All associated clients have their internet routed through the server over OpenVPN. If you so desire, you can explore the MySQL database 'snoopy' to see this raw data. Graphical data exploration is more fun though.


Using Maltego
In the Snoopy server menu select 'Configure server options' > 'List Maltego transform URLs'. This will give URLs to download Maltego Snoopy entities and machines, as well as a list of TDS transform URLs. You will need to download and add the entities and machines to your local Maltego installation, and add the transform URLs to your Maltego TDS account (https://cetas.paterva.com/tds). This is depicted below.


Transform URLs


Entities and transforms

Maltego TDS server


Adding the seed to maltego


We can explore data my dragging the 'Snoopy' entity onto the canvas. This entity has two useful properties - 'start_time' and 'end_time'. If these are left blank Snoopy will run in 'real time' mode - that is to say displaying data from the last 5 minutes (variable can be set in server configuration menu). This time value will be 'inherited' by entities created from this point. The transforms should be obvious to explore, but below are some examples (further examples were in the original blog post).


Drones and locations


Devices observed at multiple=


Countries devices have visited

Browsing intercepted Facebook profiles


Twitter Geolocation Intersection


I shall write a separate blog post detailing all the transforms. For now, enjoy playing around.


Web Interface
You can access the web interface via http://yoursnoopyserver:5000/. You can write your own data exploration plugins. Check the Appendix of the README file for more info on that.

Mon, 26 Nov 2012

Skype Passive IP Disclosure Vulnerability

When performing spear phishing attacks, the more information you have at your disposal, the better. One tactic we thought useful was this Skype security flaw disclosed in the early days of 2012 (discovered by one of the Skype engineers much earlier).

For those who haven't heard of it - this vulnerability allows an attacker to passively disclose victims external, as well as internal, IP addresses in a matter of seconds, by viewing the victims VCard through an 'Add Contact' form.

Why is this useful?

1. Verifying the identity and the location of the target contact. Great when performing geo-targeted phishing attacks.

2. Checking whether your Skype account has not been used elsewhere :)

3. Spear phishing enumeration while Pen Testing.

4. Just out of plain curiosity.

To get this working, following these basic steps:

1. Download and install the patched version of Skype 5.5 from here (the patch enables the Skype client to save the logs in non obfuscated form)

2. Save the lines below as a Skype_log_patch.reg reg file:

Windows Registry Editor Version 5.00
[HKEY_CURRENT_USER\Software\Skype\Phone\UI\General]
"LastLanguage"="en"
"Logging"="SkypeDebug2003"
"Logging2"="on"
Once saved, run it to enable the Skype Debug Log File.

4. Start Skype.

5. Search for any Skype contact and click on the 'Add a Skype Contact' button, but do not send the request, rather click on the user to view their VCard.

4. Open the log file (it should appear in the same folder as Skype executable e.g. debug-20121003-0150)

5. Look for the PresenceManager line - you should see something similar to this - >

In the above image you can spot my Skype name, external as well as internal IP addresses.

The log will include similar credentilas for everyone listed as a "contact" under your Skype account, as well as many other fresh, genuine and useful information received directly from your local Skype tracker.

Tue, 25 Sep 2012

Snoopy: A distributed tracking and profiling framework

At this year's 44Con conference (held in London) Daniel and I introduced a project we had been working on for the past few months. Snoopy, a distributed tracking and profiling framework, allowed us to perform some pretty interesting tracking and profiling of mobile users through the use of WiFi. The talk was well received (going on what people said afterwards) by those attending the conference and it was great to see so many others as excited about this as we have been.

In addition to the research, we both took a different approach to the presentation itself. A 'no bullet points' approach was decided upon, so the slides themselves won't be that revealing. Using Steve Jobs as our inspiration, we wanted to bring back the fun to technical conferences, and our presentation hopefully represented that. As I type this, I have been reliably informed that the DVD, and subsequent videos of the talk, is being mastered and will be ready shortly. Once we have it, we will update this blog post. In the meantime, below is a description of the project.

Background

There have been recent initiatives from numerous governments to legalise the monitoring of citizens' Internet based communications (web sites visited, emails, social media) under the guise of anti-terrorism. Several private organisations have developed technologies claiming to facilitate the analysis of collected data with the goal of identifying undesirable activities. Whether such technologies are used to identify such activities, or rather to profile all citizens, is open to debate. Budgets, technical resources, and PhD level staff are plentiful in this sphere.

Snoopy

The above inspired the goal of the Snoopy project: with the limited time and resources of a few technical minds could we create our own distributed tracking and data interception framework with functionality for simple analysis of collected data? Rather than terrorist-hunting, we would perform simple tracking and real-time + historical profiling of devices and the people who own them. It is perhaps worth mentioning at this point that Snoopy is compromised of various existing technologies combined into one distributed framework.

"Snoopy is a distributed tracking and profiling framework."

Below is a diagram of the Snoopy architecture, which I'll elaborate on:

1. Distributed?

Snoopy runs client side code on any Linux device that has support for wireless monitor mode / packet injection. We call these "drones" due to their optimal nature of being small, inconspicuous, and disposable. Examples of drones we used include the Nokia N900, Alfa R36 router, Sheeva plug, and the RaspberryPi. Numerous drones can be deployed over an area (say 50 all over London) and each device will upload its data to a central server.

2. WiFi?

A large number of people leave their WiFi on. Even security savvy folk; for example at BlackHat I observed >5,000 devices with their WiFi on. As per the RFC documentation (i.e. not down to individual vendors) client devices send out 'probe requests' looking for networks that the devices have previously connected to (and the user chose to save). The reason for this appears to be two fold; (i) to find hidden APs (not broadcasting beacons) and (ii) to aid quick transition when moving between APs with the same name (e.g. if you have 50 APs in your organisation with the same name). Fire up a terminal and bang out this command to see these probe requests:

tshark -n -i mon0 subtype probereq

(where mon0 is your wireless device, in monitor mode)

2. Tracking?

Each Snoopy drone collects every observed probe-request, and uploads it to a central server (timestamp, client MAC, SSID, GPS coordinates, and signal strength). On the server side client observations are grouped into 'proximity sessions' - i.e device 00:11:22:33:44:55 was sending probes from 11:15 until 11:45, and therefore we can infer was within proximity to that particular drone during that time.

We now know that this device (and therefore its human) were at a certain location at a certain time. Given enough monitoring stations running over enough time, we can track devices/humans based on this information.

3. Passive Profiling?

We can profile device owners via the network SSIDs in the captured probe requests. This can be done in two ways; simple analysis, and geo-locating.

Simple analysis could be along the lines of "Hmm, you've previously connected to hooters, mcdonalds_wifi, and elCheapoAirlines_wifi - you must be an average Joe" vs "Hmm, you've previously connected to "BA_firstclass, ExpensiveResataurant_wifi, etc - you must be a high roller".

Of more interest, we can potentially geo-locate network SSIDs to GPS coordinates via services like Wigle (whose database is populated via wardriving), and then from GPS coordinates to street address and street view photographs via Google. What's interesting here is that as security folk we've been telling users for years that picking unique SSIDs when using WPA[2] is a "good thing" because the SSID is used as a salt. A side-effect of this is that geo-locating your unique networks becomes much easier. Also, we can typically instantly tell where you work and where you live based on the network name (e.g BTBusinessHub-AB12 vs BTHomeHub-FG12).

The result - you walk past a drone, and I get a street view photograph of where you live, work and play.

4. Rogue Access Points, Data Interception, MITM attacks?

Snoopy drones have the ability to bring up rogue access points. That is to say, if your device is probing for "Starbucks", we'll pretend to be Starbucks, and your device will connect. This is not new, and dates back to Karma in 2005. The attack may have been ahead of its time, due to the far fewer number of wireless devices. Given that every man and his dog now has a WiFi enabled smartphone the attack is much more relevant.

Snoopy differentiates itself with its rogue access points in the way data is routed. Your typical Pineapple, Silica, or various other products store all intercepted data locally, and mangles data locally too. Snoopy drones route all traffic via an OpenVPN connection to a central server. This has several implications:

(i) We can observe traffic from *all* drones in the field at one point on the server. (ii) Any traffic manipulation needs only be done on the server, and not once per drone. (iii) Since each Drone hands out its own DHCP range, when observing network traffic on the server we see the source IP address of the connected clients (resulting in a unique mapping of MAC <-> IP <-> network traffic). (iv) Due to the nature of the connection, the server can directly access the client devices. We could therefore run nmap, Metasploit, etc directly from the server, targeting the client devices. This is a much more desirable approach as compared to running such 'heavy' software on the Drone (like the Pineapple, pr Pwnphone/plug would). (v) Due to the Drone not storing data or malicious tools locally, there is little harm if the device is stolen, or captured by an adversary.

On the Snoopy server, the following is deployed with respect to web traffic:

(i) Transparent Squid server - logs IP, websites, domains, and cookies to a database (ii) sslstrip - transparently hijacks HTTP traffic and prevent HTTPS upgrade by watching for HTTPS links and redirecting. It then maps those links into either look-alike HTTP links or homograph-similar HTTPS links. All credentials are logged to the database (thanks Ian & Junaid). (iii) mitmproxy.py - allows for arbitary code injection, as well as the use of self-signed SSL certificates. By default we inject some JavaScipt which profiles the browser to discern the browser version, what plugins are installed, etc (thanks Willem).

Additionally, a traffic analysis component extracts and reassembles files. e.g. PDFs, VOiP calls, etc. (thanks Ian).

5. Higher Level Profiling? Given that we can intercept network traffic (and have clients' cookies/credentials/browsing habbits/etc) we can extract useful information via social media APIs. For example, we could retrieve all Facebook friends, or Twitter followers.

6. Data Visualization and Exploration? Snoopy has two interfaces on the server; a web interface (thanks Walter), and Maltego transforms.

-The Web Interface The web interface allows basic data exploration, as well as mapping. The mapping part is the most interesting - it displays the position of Snoopy Drones (and client devices within proximity) over time. This is depicted below:

-Maltego Maltego Radium has recently been released; and it is one awesome piece of kit for data exploration and visualisation.What's great about the Radium release is that you can combine multiple transforms together into 'machines'. A few example transformations were created, to demonstrate:

1. Devices Observed at both 44Con and BlackHat Vegas Here we depict devices that were observed at both 44Con and BlackHat Las Vegas, as well as the SSIDs they probed for.

2. Devices at 44Con, pruned Here we look at all devices and the SSIDs they probed for at 44Con. The pruning consisted of removing all SSIDs that only one client was looking for, or those for which more than 20 were probing for. This could reveal 'relationship' SSIDs. For example, if several people from the same company were attending- they could all be looking for their work SSID. In this case, we noticed the '44Con crew' network being quite popular. To further illustrate Snoopy we 'targeted' these poor chaps- figuring out where they live, as well as their Facebook friends (pulled from intercepted network traffic*).

Snoopy Field Experiment

We collected broadcast probe requests to create two main datasets. I collected data at BlackHat Vegas, and four of us sat in various London underground stations with Snoopy drones running for 2 hours. Furthermore, I sat at King's Cross station for 13 hours (!?) collecting data. Of course it may have made more sense to just deploy an unattended Sheeva plug, or hide a device with a large battery pack - but that could've resulted in trouble with the law (if spotted on CCTV). I present several graphs depicting the outcome from these trials:

The pi chart below depicts the proportion of observed devices per vendor, from the total sample of 77,498 devices. It is interesting to see Apple's dominance. pi_chart

The barchart below depicts the average number of broadcast SSIDs from a random sample of 100 devices per vendor (standard deviation bards need to be added - it was quite a spread).

The barchart below depicts my day sitting at King's Cross station. The horizontal axis depicts chunks of time per hour, and the vertical access number of unique device observations. We clearly see the rush hours.

Potential Use

What could be done with Snoopy? There are likely legal, borderline, and illegal activities. Such is the case with any technology.

Legal -Collecting anonymized statistics on thoroughfare. For example, Transport for London could deploy these devices at every London underground to get statistics on peak human traffic. This would allow them to deploy more staff, or open more pathways, etc. Such data over the period of months and years would likely be of use for future planning. -Penetration testers targeting clients to demonstrate the WiFi threat.

Borderline -This type of technology could likely appeal to advertisers. For example, a reseller of a certain brand of jeans may note that persons who prefer certain technologies (e.g. Apple) frequent certain locations. -Companies could deploy Drones in one of each of their establishments (supermarkets, nightclubs, etc) to monitor user preference. E.g. a observing a migration of customers from one establishment to another after the deployment of certain incentives (e.g. promotions, new layout). -Imagine the Government deploying hundreds of Drones all over a city, and then having field agents with mobile Drones in their pockets. This could be a novel way to track down or follow criminals. The other side of the coin of course being that they track all of us...

Illegal -Let's pretend we want to target David Beckham. We could attend several public events at which David is attending (Drone in pocket), ensuring we are within reasonable proximity to him. We would then look for overlap of commonly observed devices over time at all of these functions. Once we get down to one device observed via this intersection, we could assume the device belongs to David. Perhaps at this point we could bring up a rogue access point that only targets his device, and proceed maliciously from there. Or just satisfy ourselves by geolocating places he frequents. -Botnet infections, malware distribution. That doesn't sound very nice. Snoopy drones could be used to infect users' devices, either by injection malicious web traffic, or firing exploits from the Snoopy server at devices. -Unsolicited advertising. Imagine browsing the web, and an unscrupulous 3rd party injects viagra adverts at the top of every visited page?


Similar tools

Immunity's Stalker and Silica Hubert's iSniff GPS

Snoopy in the Press

Risky Biz Podcast Naked Scientist Podcast(transcript) The Register Fierce Broadband Wireless

***FAQ***

Q. But I use WPA2 at home, you can't hack me! A. True - if I pretend to be a WPA[2] network association it will fail. However, I bet your device is probing for at least one open network, and when I pretend to be that one I'll get you.

Q. I use Apple/Android/Foobar - I'm safe! A. This attack is not dependent on device/manufacture. It's a function of the WiFi specification. The vast majority of observed devices were in fact Apple (>75%).

Q. How can I protect myself? A. Turn off your WiFi when you l leave home/work. Be cautions about using it in public places too - especially on open networks (like Starbucks). A. On Android and on your desktop/laptop you can selectively remove SSIDs from your saved list. As for iPhones there doesn't seem to be option - please correct me if I'm wrong? A. It'd be great to write an application for iPhone/Android that turns off probe-requests, and will only send them if a beacon from a known network name is received.

Q. Your research is dated and has been done before! A. Some of the individual components, perhaps. Having them strung together in our distributed configuration is new (AFAIK). Also, some original ideas where unfortunately published first; as often happens with these things.

Q. But I turn off WiFi, you'll never get me! A. It was interesting to note how many people actually leave WiFi on. e.g. 30,000 people at a single London station during one day. WiFi is only one avenue of attack, look out for the next release using Bluetooth, GSM, NFC, etc :P

Q. You're doing illegal things and you're going to jail! A. As mentioned earlier, the broadcast nature of probe-requests means no laws (in the UK) are being broken. Furthermore, I spoke to a BT Engineer at 44Con, and he told me that there's no copyright on SSID names - i.e. there's nothing illegal about pretending to be "BTOpenzone" or "SkyHome-AFA1". However, I suspect at the point where you start monitoring/modifying network traffic you may get in trouble. Interesting to note that in the USA a judge ruled that data interception on an open network is not illegal.

Q. But I run iOS 5/6 and they say this is fixed!! A. Mark Wuergler of Immunity, Inc did find a flaw whereby iOS devices leaked info about the last 3 networks they had connected to. The BSSID was included in ARP requests, which meant anyone sniffing the traffic originating from that device would be privy to the addresses. Snoopy only looks at broadcast SSIDs at this stage - and so this fix is unrelated. We haven't done any tests with the latest iOS, but will update the blog when we have done so.

Q. I want Snoopy! A. I'm working on it. Currently tidying up code, writing documentation, etc. Soon :-)

Thu, 17 May 2012

A closer look into the RSA SecureID software token

Widespread use of smart phones by employees to perform work related activities has introduced the idea of using these devices as an authentication token. As an example of such attempts, RSA SecureID software tokens are available for iPhone, Nokia and the Windows platforms. Obviously, mobile phones would not be able to provide the level of tamper-resistance that hardware tokens would, but I was interested to know how easy/hard it could be for a potential attacker to clone RSA SecureID software tokens. I used the Windows version of the RSA SecurID Software Token for Microsoft Windows version 4.10 for my analysis and discovered the following issues:

Device serial number of tokens can be calculated by a remote attacker :

Every instance of the installed SecurID software token application contains a hard drive plug-in (implemented in tokenstoreplugin.dll) that has a unique device serial number. This serial number can be used for "Device Binding" and the RSA documentation defines it as follows:

Before the software token is issued by RSA Authentication Manager, an additional extension attribute (<DeviceSerialNumber/>) can be added to the software token record to bind the software token to a specific devicedevice serial number is used to bind a token to a specific device. If the same user installs the application on a different computer, the user cannot import software tokens into the application because the hard drive plug-in on the second computer has a different device serial number from the one to which the user's tokens are bound”.
Reverse engineering the Hard-Disk plugin (tokenstoreplugin.dll) indicated that the device serial number is dependent on the system's host name and current user's windows security identifier (SID). An attacker, with access to these values, can easily calculate the target token's device serial number and bypass the above mentioned protection. Account SIDs can be enumerated in most of the Microsoft active directory based networks using publicly available tools, if the “enumeration of SAM accounts and shares” security setting was not set to disabled. Host names can be easily resolved using internal DNS or Microsoft RPC. The following figures show the device serial number generation code:

The SecureID device serial number calculation can be represented with the following formula:

device_serial_number=Left(SHA1(host_name+user_SID+“RSA Copyright 2008”),10)

Token's copy protection:

The software token information, including the secret seed value, is stored in a SQLite version 3 database file named RSASecurIDStorage under the “%USERPROFILE%\Local Settings\Application Data\RSA\RSA SecurID Software Token Library” directory. This file can be viewed by any SQLite database browser, but sensitive information such as the checksum and seed values are encrypted. RSA documentation states that this database file is both encrypted and copy protected: “RSA SecurID Software Token for Windows uses the following data protection mechanisms to tie the token database to a specific computer:

• Binding the database to the computer's primary hard disk drive

• Implementing the Windows Data Protection API (DPAPI)

These mechanisms ensure that an intruder cannot move the token database to another computer and access the tokens. Even if you disable copy protection, the database is still protected by DPAPI.”

The RSASecurIDStorage database file has two tables: PROPERTIES and TOKENS. The DatabaseKey and CryptoChecksum rows found in the PROPERTIES tables were found to be used for copy protection purpose as shown in the figure below:

Reverse engineering of the copy protection mechanism indicated that:

  • The CryptoChecksum value is encrypted using the machine's master key, which can only be decrypted on the same computer system, unless the attacker can find a way to import the machine key and other supporting data to their machine
  • The DatabaseKey is encrypted using the current logged-on user's master key and provides token binding to that user account
Previous research on the Microsoft Windows DPAPI internals has made offline decryption of the DPAPI protected data possible. This means that if the attacker was able to copy the RSA token database file along with the encryption master keys to their system (for instance by infecting a victim's machine with a rootkit), then it would be possible to decrypt the token database file on their machine. The detailed attack steps to clone a SecurID software token by copying the token database file from a victim's system are as follows:
  1. Copy the token database file, RSASecurIDStorage, from the user profile directory
  2. Copy the user's master key from %PROFILEDIR%\Application Data\Microsoft\Protect\%SID%; the current master key's GUID can be read from Preferred file as shown in the figure below:
  3. Copy the machine's master key from the %WINDIR%\system32\Microsoft\Protect\ directory. Microsoft Windows protects machine keys against tampering by using SHA1 hash values, which are stored and handled by the Local Security Authority Subsystem Service (LSASS) process in Microsoft Windows operating systems. The attacker should also dump these hash values from LSA using publicly available tools like lsadump.
  4. Having all the required master keys and token database file, install and deploy a windows machine and change the machine and user SIDs to the victim's system SID by using available tools such as newSID.
  5. Overwrite the token database file, user and machine master keys with the ones copied from victim's system. You would also need to find a way to update the DPAPI_SYSTEM value in LSA secrets of the Windows machine. Currently, this is the only challenge that I was not able to solve , but it should be possible to write a tool similar to lsadump which updates LSA secrets.
  6. When the above has been performed, you should have successfully cloned the victim's software token and if they run the SecurID software token program on your computer, it will generate the exact same random numbers that are displayed on the victim's token.
In order to demonstrate the possibility of the above mentioned attack, I installed and activated token A and token B on two separate windows XP virtual machines and attempted to clone token B on the virtual machine that was running token A. Taking the above steps, token B was successfully cloned on the machine running token A as shown in the following figures:

In order to counter the aforementioned issues, I would recommend the use of "trusted platform module" (TPM) bindings, which associates the software token with the TPM chip on the system (TPM chip for mobiles? there are vendors working on it).