Grey bar Blue bar
Share this:

Mon, 4 Mar 2013

Black Hat Europe - Bootcamp Training

SensePost will be at Black Hat Europe 2013 to deliver the Bootcamp module of the Hacking by Numbers series. This method based introductory course emphasizes the structure, approach, and thought-processes involved in hacking (over tools and tricks). The course is popular with beginners, who gain their first view into the world of hacking, as well as experts, who appreciate the sound, structured approach.

A break down of what will be covered during this course:

  • Internet Reconnaissance

  • Internet Fingerprinting

  • Vulnerability Discovery

  • Exploiting Known Vulnerabilities

  • Finding and Exploiting Vulnerabilities in Web Applications

  • Attacking Content Management Systems

  • SQL Injection

  • Real-world exercises and capture-the-flags

To summarize:

What? SensePost Hacking by Numbers, Bootcamp edition
Where? Amsterdam, BlackHat EU
When? 12th & 13th March 2013
Level? Introductory

See the BlackHat course page for more information, or to book your seat.

We're looking forward to seeing you there!
Glenn & Sara

Vulnerability Management Analyst Position

Have a keen interest on scanning over 12000 IP's a week for vulnerabilities? Excited about the thought of assessing over 100 web applications for common vulnerabilities? If so, an exciting, as well as demanding, position has become available within the Managed Vulnerability Scanning (MVS) team at SensePost.

Job Title: Vulnerability Management Analyst

Salary Range: Industry standard, commensurate with experience

Location: Johannesburg/Pretoria, South Africa

We are looking for a talented person to join our MVS team to help manage the technology that makes up our Broadview suite and, more importantly, finding vulnerabilities, interpreting the results and manually verifying them. We are after talented people with a broad skill set to join our growing team of consultants. Our BroadView suite of products consists of our extensive vulnerability scanning engine, which looks at both the network-layer and the application layer, as well as our extensive DNS footprinting technologies.

The role of the Vulnerability Management Analyst will possess the following skills:

  • Be able to multitask and meet client deadlines. We want a person that thinks 'I can do that!'

  • Possess excellent written and oral communication skills. Being able to understand a vulnerability and explain it to business leaders is a must.

  • A working knowledge of enterprise vulnerability management products and remedial work flow

  • A broad knowledge of most common enterprise technologies and operating systems

  • A passion for security and technology

Some additional conditions:

  • A post graduate degree or infosec certification would be beneficial, however, showing us you have the passion and skills also helps

  • This job requires some after-hours and weekend commitments (we try to keep this to a minimum)

  • Bonus points for knowledge of sed, awk and python, ok even ruby.

  • PCI-QSA is desired but not required

Impress us with your skills by sending an email to and lets take it from there.

SensePost is an equal opportunity partner.

Wed, 9 May 2012

Pentesting in the spotlight - a view

As 44Con 2012 starts to gain momentum (we'll be there again this time around) I was perusing some of the talks from last year's event...

It was a great event with some great presentations, including (if I may say) our own Ian deVilliers' *Security Application Proxy Pwnage*. Another presentation that caught my attention was Haroon Meer's *Penetration Testing considered harmful today*. In this presentation Haroon outlines concerns he has with Penetration Testing and suggests some changes that could be made to the way we test in order to improve the results we get. As you may know a core part of SensePost's business, and my career for almost 13 years, has been security testing, and so I followed this talk quite closely. The raises some interesting ideas and I felt I'd like to comment on some of the points he was making.

As I understood it, the talk's hypothesis could be (over) simplified as follows:

  1. Despite all efforts the security problem is growing and we're heading towards a 'security apocalypse';
  2. Penetration Testing has been presented as a solution to this problem;
  3. Penetration Testing doesn't seem to be working - we're still just one 0-day away from being owned - even for our most valuable assets;
  4. One of the reasons for this is that we don't cater for the 0-day, which is a game-changer. 0-day is sometimes overemphasized, but mostly it's underemphasized, making the value of the test spurious at best;
  5. There are some ways in which this can be improved, including the use '0-day cards', which allow the tester to emulate the use of a 0-day on a specific system without needing to actually have one. Think of this like a joker in a game of cards.
To begin with, let's consider the term "Penetration Testing", which sits at the core of the hypotheses. This term is widely used to express a number of security testing methodologies and could also be referred to as "attack & penetration", "ethical hacking", "vulnerability testing" or "vulnerability assessment". At SensePost we use the latter term, and the methodology it expresses includes a number of phases of which 'penetration testing' - the attempt to actually leverage the vulnerabilities discovered and practically demonstrate their potential impact to the business - is only one. The talk did not specify which specific definition of Penetration Test he was using. However, given the emphasis later in the talk about the significance of the 0-day and 'owning' things, I'm assuming he was using the most narrow, technical form of the term. It would seem to me that this already impacts much of his assertion: There are cases of course where a customer wants us simply to 'own' something, or somethings, but most often Penetration Testing is performed within the context of some broader assessment within which many of Haroon's concerns may already be being addressed. As the talk pointed out, there are instances where the question is asked "can we breached?", or "can we be breached without detecting it?". In such cases a raw "attack and penetration" test can be exactly what's needed; indeed it's a model that's been used by the military for decades. However for the most part penetration testing should only be used as a specific phase in an assessment and to achieve a specific purpose. I believe many services companies, including our own, have already evolved to the point where this is the case.

Next, I'd like to consider the assertion that penetration testing or even security assessment is presented as the "solution" to the security problem. While it's true that many companies do employ regular testing, amongst our customers it's most often used as a part of a broader strategy, to achieve a specific purpose. Security Assessment is about learning. Through regular testing, the tester, the assessment team and the customer incrementally understand threats and defenses better. Assumptions and assertions are tested and impacts are demonstrated. To me the talk's point is like saying that cholesterol testing is being presented as a solution to heart attacks. This seems untrue. Medical testing for a specific condition helps us gauge the likelihood of someone falling victim to a disease. Having understood this, we can apply treatments, change behavior or accept the odds and carry on. Where we have made changes, further testing helps us gauge whether those changes were successful or not. In the same way, security testing delivers a data point that can be used as part of a general security management process. I don't believe many people are presenting testing as the 'solution' to the security problem.

It is fair to say that the entire process within which security testing functions is not having the desired effect; Hence the talk's reference to a "security apocalypse". The failure of security testers to communicate the severity of the situation in language that business can understand surely plays a role here. However, it's not clear to me that the core of this problem lies with the testing component.

A significant, and interesting component of the talk's thesis has to do with the role of "0-day" in security and testing. He rightly points out that even a single 0-day in the hands of an attacker can completely change the result of the test and therefore the situation for the attacker. He suggests in his talk that the testing teams who do have 0-day are inclined to over-emphasise those that they have, whilst those who don't have tend to underemphasize or ignore their impact completely. Reading a bit into what he was saying, you can see the 0-day as a joker in a game of cards. You can play a great game with a great hand but if your opponent has a joker he's going to smoke you every time. In this the assertion is completely true. The talk goes on to suggest that testers should be granted "0-day cards", which they can "play" from time to time to be granted access to a particular system and thereby to illustrate more realistically the impact a 0-day can have. I like this idea very much and I'd like to investigate incorporating it into the penetration testing phase for some of our own assessments.

What I struggle to understand however, is why the talk emphasizes the particular 'joker' over a number of others that seems apparent to me. For example, why not have a "malicious system administrator card", a "spear phishing card", a "backdoor in OTS software" card or a "compromise of upstream provider" card? As the 'compromise' of major UK sites like the Register and the Daily Telegraph illustrate there are many factors that could significantly alter the result of an attack but that would typically fall outside the scope of a traditional penetration test. These are attack vectors that fall within the victim's threat model but are often outside of their reasonable control. Their existence is typically not dealt with during penetration testing, or even assessment, but also cannot be ignored. This doesn't doesn't invalidate penetration testing itself, it simply illustrates that testing is not equal to risk management and that risk management also needs to consider factors beyond the client's direct control.

The solution to this conundrum was touched on in the presentation, albeit very briefly, and it's "Threat Modeling". For the last five years I've been arguing that system- or enterprise-wide Threat Modeling presents us with the ability to deal with all these unknown factors (and more) and perform technical testing in a manner that's both broader and more efficient.

The core of the approach I'm proposing is roughly based on the Microsoft methodology and looks as follows:

  1. Develop a model of your target environment, incorporating all players, locations, and interfaces. This is done in close collaboration between the client and the tester, thus incorporating both the 'insider' and the 'outsider' perspective;
  2. Enumerate all potential risks, and map them to the model. This results in a very long and comprehensive list of hypothetical risks, which would naturally include the 0-day, but also all the other 'jokers' that we discussed above;
  3. Sort the list into some order of priority and group similar hypothetical risks together;
  4. Perform tests in order of priority where appropriate to prove or disprove the hypothetical risks;
  5. Remediate, mitigate, insure or inform as appropriate;
  6. Rinse and repeat.
This approach provides a reasonable balance between solid theoretical risk management and aggressive technical testing that addresses all the concerns raised in the talk about the way penetration testing is done today. It also provides the customer with a concrete register of tested risks that can easily be updated from time-to-time and makes sense to both technical and business leaders.

Threat Modeling makes our testing smarter, broader, more efficient and more relevant and as such is a vital improvement to our risk assessment methodology.

Solving the security problem in total is sadly still going to take a whole lot more work...

Wed, 4 Apr 2012

Towards Firmware Analysis

While I was evaluating a research idea about a SCADA network router during the past week, I used available tools and resources on the Internet to unpack the device firmware and search for interesting components. During security assessments, you may find interesting embedded devices available on the network. Whilst many don't look at the feasibility of doing firmware analysis, I decided to document the steps I took to analysis my target firmware, so you can take the similar approach in the case of assessing such devices. This could also be a good indication on the feasibility of automating this process (An unfinished project was launched in 2007:

The following process would be easy for most of you who use *nix systems on a daily bases:

Step 1) Scanning the firmware image

The BinWalk tool is useful for scanning firmware image files to identify embedded file systems and compressed streams inside. It can detect common bootloaders, file systems and compressed archives inside a given firmware image file. Since it works by scanning for signature and magic values, it usually has false positives and the results need to be verified manually.

U-Boot bootloader (yes, it's German :-)) signature was identified at offset 262144 and the uImage header information, such as creation date, CPU type, etc appears to be valid. This bootloader was followed by a gzip compressed stream, which probably is the zImage kernel and a squashfs file system at offset 1522004. We will attempt to extract this file system in the next step. The following are common bootloaders that are used in embedded devices with ARM CPU:

Blob bootloader Bootldr Redboot U-Boot ABLE bootloader

The bootloader's task is to load the kernel image at the correct address and pass initial parameters to it. So in most cases we are not interested in analysing the bootloader itself, but in the root file system.

Step 2) Extracting file systems

First, I extracted the uImage content at offset 262144 by using dd command and then used uboot-mkimage ( to test if it's a valid uImage file and to discover more information about it:

The image format was valid and it contained two other file system images with 1MB and 2MB sizes, which probably are kernel zImage and root file systems (RAMdisk). If you check the uImage file format, you will notice a 64 bytes long header. There is a “multi-file” image list that contains each image size in bytes and this list is terminated by a 32bit zero. So, I would need to skip 64+2*4+4=76 bytes from start of the uImage file to get to the first Image content that would be kernel zImage:

The file command could not detect kernel image or squshfs in the extracted file systems; this might be due to lack of squashfs (with LZMA compression) in my Ubuntu kernel. I proceed by using Firmware Mod Kit which contains a set of programs to decompress various file system images including squashfs-LZMA. After trying the various unsquashfs version 3.x scripts, I was able extract the rootfs image files successfully:

Step 3) Searching the root file system

Once the root file system files were extracted, we can file and strings search tools to look for interesting files and patterns such as RSA private key files, password and configuration files, SQL database files, SQL query string and etc. In my case, I was looking for RSA certificate or private key files and found the following: (a database of private keys in embedded devices was published in 2011 but it's not actively maintained, you can access it at

One can write shell scripts to automate the file system search process.

Step 4) Running and debugging the Executables

The Qemu emulator supports multiple CPU architectures including ARM, MIPS, PowerPC, etc and can be used to run and debug the interesting executable extracted from the firmware image on your system for dynamic analysis purposes. You would need to build the Qemu with —static and —enable-debug options. The following figure demonstrates how to run the web server (httpd) that was extracted from my target firmware using chroot and Qemu:

As you can see from the above screenshot, the web server was working fine, but was not able to display the bootloader version, because it couldn't read this value from the NVRAM (not volatile RAM) normally mounted by the kernel in a real device (there is an interesting post here about resolving the NVRAM access errors while emulating embedded device executables). Some of the executables, like the remote management agent example below, could have more severe problems running under emulator.

For troubleshooting such cases, or monitoring an emulated process while fuzzing it, we would need to attach a debugger to it. This can be achieved by using —g switch in Qemu and using a debugger out of the emulator process or even on a remote windows machine. I used IDA pro remote GDB debugging tool as shown in the figures below:

Once successfully attached to the remote emulated process, IDA pro can be used to simply trace the execution of the process, placing breakpoints or running IDA scripts.

Often overlooked during assessments, firmware analysis of devices can yield results and often do when we target them at SensePost. Our methodology includes the above steps and we recommend yours does too.

Wed, 7 Mar 2012

Mobile Security - Observations from the developing world

By the year 2015 sub-Saharan Africa will have more people with mobile network access than with access to electricity at home.
This remarkable fact from a 2011 MobileMonday report [1] came to mind again as I read an article just yesterday about the introduction of Mobile Money in the UK: By the start of next year, every bank customer in the country may have the ability to transfer cash between bank accounts, using an app on their mobile phone. [2]

I originally came across the MobileMonday report while researching the question of mobility and security in Africa for a conference I was asked to present at [3]. In this presentation I examine the global growth and impact of the so-called mobile revolution and then its relevance to Africa, before looking at some of the potential security implications this revolution will have.

The bit about the mobile revolution is easy: According to the Economist there will be 10 billion mobile devices connected to the Internet by 2020, and the number of mobile devices will surpass the number of PCs and laptops by this year already. The mobile-only Internet population will grow 56-fold from 14 million at the end of 2010 to 788 million by the end of 2015. Consumerization - the trend for new information technology to emerge first in the consumer market and then spread into business organizations, resulting in the convergence of the IT and consumer electronics industries - implies that the end-user is defining the roadmap for these technologies as manufacturers, networks and businesses scramble desperately to absorb their impact.

Africa, languishing behind in so many other respects, is right there on the rushing face of this new wave, as my initial quote illustrates. In fact the kind of mobile payment technology referred to in the BBC article is already quite prevalent in our home markets in Africa and we're frequently engaged to test mobile application security in various forms. In my presentation for example, I make reference to m-Pesa - the mobile payments system launched in Kenya and now mimicked in South Africa also. Six million people in Kenya use m-Pesa, and more than 5% of that country's annual GDP is moved to and fro directly from mobile to mobile. There are nearly five times the number of m-Pesa outlets than the total number of PostBank branches, post offices, bank branches, and automated teller machines (ATMs) in the country combined.

Closer to home in South Africa, it is estimated that the number of people with mobile phones outstrips the number of people with fixed-line Internet connections by a factor of ten! And this impacts our clients and their businesses directly: Approximately 44% of urban cellphone users in South Africa now make use of mobile banking services. The reasoning is clear: Where fixed infrastructure is poor mobile will dominate, and where the mobile dominates mobile services will soon follow. Mobile banking, mobile wallets, mobile TV and mobile social networking and mobile strong-authentication systems are all already prevalent here in South Africa and are already bringing with them the expected new array of security challenges. Understanding this is one of the reasons our customers come to us.

In my presentation I describe the Mobile Threat Model as having three key facets:

  • Security: The challenge of ensuring Confidentiality, Integrity and Authenticity for the data and transactions on the device;
  • Privacy: The implications of mobility (and especially convergence) for citizens and their rights to talk, move, think and act unobserved; and
  • Control: The challenge presented by the mobile revolution to governments fighting crime, gangsterism and terrorism.
All of these issues are real and complex, but I'm restricting myself to the security question here. I encourage readers to peruse the presentation itself for a full breakdown of the Threat Model because for this article I think it suffices to consider just the conclusion of my presentation, and it's this:

The technical security issues we discover on mobile devices and mobile applications today are really no different from what we've been finding in other environments for years. There are some interesting new variations and interesting new attack vectors, but it's really just a new flavor of the same thing. But there are four attributes of the modern mobile landscape that combine to present us with an entirely new challenge:

Firstly, mobiles are highly connected. The mobile phone is permanently on some IP network and by extension permanently on the Internet. However, it's also connected via GSM and CDMA; it's connected with your PC via USB, your Bluetooth headset and your GPS, and soon it will be connected with other devices in your vicinity via NFC. Never before in our history have communications been so converged, and all via the wallet-sized device in your pocket right now!

Secondly, the mobile device is deeply integrated. On or through this platform is everything anyone would ever want to know about you: Your location, your phone calls, your messages, your personal data, your photos, your location, your location history and your entire social network. Indeed, in an increasing number of technical paradigms, your mobile device is you! Moreover, the device has the ability to collect, store and transmit everything you say, see and hear, and everywhere you go!

Thirdly, as I've pointed out, mobile devices are incredibly widely distributed. Basically, everyone has one or soon will. And, we're rapidly steering towards a homogenous environment defined by IOS and Google's Android. Imagine the effect this has on the value of an exploit or attack vector. Finally, the mobile landscape is still being very, very poorly managed. Except for the Apple AppStore, and recent advances by Google to manage the Android market, there is extremely little by way of standardization, automated patching or central management to be seen. Most devices, once deployed, will stay in commission for years to come and so security mistakes being made now are likely to become a nightmare for us in the future.

Thus, the technical issues well known from years of security testing in traditional environments are destined to prevail in mobile, and we're already seeing this in the environments we've tested. This reality, combined with how connected, integrated, distributed and poorly managed these platforms are, suggests that careless decisions today could cost us very dearly in the future...

[1] Mobile Africa Report 2011, Regional Hubs of Excellence and Innovation by Dr Madanmohan Rao, Research Project Director, MobileMonday March 2011